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Abstract

We study the problem of rationing a divisible good among a group of people. Each
person’s preferences are characterized by an ideal amount that he would prefer to receive
and a minimum quantity that he will accept: any amount less than this threshold is just
as good as receiving nothing at all. Any amount beyond his ideal quantity has no effect
on his welfare.

We search for Pareto-efficient, strategy-proof, and envy-free rules. The definitions
of these axioms carry through from the more commonly studied problem without dis-
posability or acceptance thresholds. However, these are not compatible in the model
that we study. We adapt the equal-division lower bound axiom and propose another
fairness axiom called awardee-envy-freeness. Unfortunately, these are also incompatible
with strategy-proofness. We characterize all of the the Pareto-efficient rules that sat-
isfy these two properties. We also characterize all Pareto-efficient, strategy-proof, and
non-bossy rules. JEL classification: C71, D63

Keywords: Pareto-efficiency, strategy-proofness, fairness, rationing, lower-bounds,
sequential priority rules

1. Introduction

Imagine a town facing an energy shortage. Suppose that it has access to a fixed
number of kilowatt hours of electricity. Town officials must divide these among local
business owners. However, these owners have threshold quantities of electricity below
which business is not viable. That is, if the quantity allocated to a particular business
owner is lower than his threshold, it is as good as not allocating anything to him at all.
Also, an owner is made better off as the quantity that he receives increases beyond his
threshold, but only up to a certain level. We propose a model for such situations and
study rules for making rationing decisions.
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Another example is the allotment of time for using shared equipment. If sequencing
does not matter and users care only about the length of time that they can use the
equipment, our model is applicable: For each user’s job, there is a minimum amount
of time required to complete it. There is also a maximal amount of time he needs to
complete his job, beyond which he has no use for the equipment.

Finally, if a good is being rationed among a group of people, each of whom incurs a
fixed cost to use the good, then the quantity that a person requires to recoup his fixed
cost is a natural lower bound on his acceptable quantities.

In our formal model, there is a social endowment to divide among a group of peo-
ple. Each person in this group has preferences over the quantity that he receives. His
preferences are described by a minimum threshold that he finds acceptable and an ideal
amount that he would prefer to receive. He is indifferent between receiving any quantity
below his threshold and receiving nothing at all. He finds a quantity above his threshold
to be better and better as it increases, up to his ideal quantity. He is indifferent between
any two quantities that are at least as high as his ideal amount. We do not require that
the endowment be exhausted as it is disposable2. Indeed, there are situations where
disposability is an appropriate assumption, even in the context of rationing: when some
people have been satiated, the remainder may be unacceptable to those who have not.

If we restrict ourselves to rules that never give a person more than is needed to satiate
him, an alternative interpretation of our model is that of a bankruptcy problem (O’Neill,
1982), where each claimant has some participation cost: if his award does not exceed
his cost, he prefers not to show up and collect it. We interpret his ideal quantity as his
claim.

We propose a set of axioms and search for rules that satisfy them. As usual, Pareto-
efficiency says that no person can be made better off without this hurting another person.
Strategy-proofness, also defined in the usual way, says that no person can benefit by
unilaterally misrepresenting his preferences. Meaningful notions of fairness, on the other
hand, are more difficult to define. One familiar notion requires that no person “envies”
another. A weaker version is that people with identical preferences be treated identically.
We show that no Pareto-efficient rule satisfies even the weaker of these two. We propose
an axiom, awardee-envy-freeness, that says that no person who receives an amount that
he finds acceptable envies any other person. This requirement can be met alongside
Pareto-efficiency. We describe the class of all such rules. Another notion of fairness,
called the equal-division lower bound, is that each person finds what he receives to be
at least as desirable as an equal share of the social endowment. This requirement is
compatible with Pareto-efficiency and we provide a necessary and sufficient condition for
it to be met.

We also show that, unfortunately, every Pareto-efficient and strategy-proof rule vi-
olates both awardee-envy-freeness and the equal-division lower bound. We describe the
class of all Pareto-efficient, strategy-proof, and non-bossy rules. Each of these rules
always selects a very inequitable division.

Finally, we consider strengthening the strategic requirement to group strategy-proofness.
This says that no group of people can misrepresent their preferences in a way that makes
at least one member better off without hurting another member. We show that this
axiom is incompatible even with very weak notions of efficiency.

2See Kıbrıs (2003) for another model where disposability is assumed.
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For the closely related “classical” division problem with single-peaked preferences,
the endowment is to be allocated in entirety. In contrast with our model, a single
rule satisfies all of the axioms that we have discussed (Sprumont, 1991; Ching, 1992,
1994). In fact, this rule uniquely satisfies several other sets of axioms, some of which are
discussed in the appendix (Thomson, 1994; Sönmez, 1994; Thomson, 1995; Schummer
and Thomson, 1997; Thomson, 1997; Weymark, 1999). To re-iterate, the differences
between this classical model and ours are free-disposal of the social endowment and
acceptance thresholds.

The incompatibility of Pareto-efficiency, strategy-proofness, and fairness in our model
is due to lower bounds on acceptable quantities. In a model without free-disposal, upper
bounds on a person’s consumption space are also meaningful. When both upper and
lower bounds are introduced to the classical problem with single-peaked preferences,
strategy-proofness is incompatible with even a weak notion of efficiency (Bergantiños
et al., 2009). This is different from our model, where strategy-proofness and efficiency
are compatible. When there are only upper bounds but no lower bounds, we no longer
have any of the incompatibilities highlighted here. In fact, we obtain characterizations
similar to the classical problem (Bergantiños et al., 2010).

A similarity between our model and one with both upper and lower bounds, without
free-disposal, is that for a particular definition of fairness, the class of Pareto-efficient and
fair rules (Bergantiños et al., 2009) resembles the class of Pareto-efficient and awardee-fair
rules that we characterize for our model.

Though the social endowment is divisible, our results are comparable to those in the
literature on problems where the social endowment is a set of indivisible objects (Pápai,
2001; Hatfield, 2009). This is because the lower bounds on acceptable quantities cause
a sort of indivisibility of the good: either a person receives an acceptable quantity or
nothing at all, but nothing in between.

2. The Model

Let N be a group of people and M∈ R+ be an amount of the divisible good. Each
i ∈ N has preferences over the quantity that is allotted to him. His preferences, Ri
defined over [0,∞), are characterized by an acceptance threshold li and an ideal amount
pi such that li ≤ pi. He is indifferent between any two quantities x, y ∈ [0,∞) if either
x, y ≤ li or x, y ≥ pi. In all other cases he prefers x to y whenever x > y. If i finds x to
be at least as desirable as y under preference relation Ri, we write x Ri y. If he finds x
to be more desirable than y, we write x Pi y and x Ii y if he is indifferent between them.
Note that Ri is completely described by li and pi.

Let R be the set of all preference relations. A problem is a profile of preferences,
R ∈ RN , and an amount of social endowment, M ∈ R+. The amount is to be allocated
(not necessarily entirely) among N in such a way that the sum of what is awarded to each
person does not exceed M . A feasible allocation at M is any vector x ∈ RN+ such that∑
i∈N xi ≤M . Let F (M) denote the set of feasible allocations at M . Given x ∈ F (M),

for each i ∈ N , we denote i’s component of x by xi and the list of others’ components
by x−i. Similarly, for each R ∈ RN and each i ∈ N , let Ri denote i’s preference relation
and let R−i denote the list of others’ preferences. For each R′i ∈ R, let (R′i, R−i) be the
profile where i has preference R′i and the list of others’ preferences is R−i.

A rule, ϕ : RN × R+ → RN+ , associates every problem with a feasible allocation.
3



Remark 1. An interesting subdomain: Each problem where, for each i ∈ N li = 0, can
also be interpreted as classical problem with single-peaked preferences where the amount
to divide does not exceed the sum of the peaks. The results for classical problems hold
for this subdomain. ◦

3. Axioms

Let ϕ be a rule. The first requirement is that an allocation is chosen only if there
is no other allocation that makes at least one person better off without making another
worse off.
Pareto-efficiency: For each (R,M) ∈ RN × R+, there is no x ∈ F (M) such that, for
each i ∈ N, xi Ri ϕi(R,M) and there is i ∈ N such that xi Pi ϕi(R,M).

A weakening of Pareto efficiency is that an allocation is chosen only if there is no
other allocation that makes every person better off.
Weak Pareto-efficiency: For each (R,M) ∈ RN × R+, there is no x ∈ F (M) such
that, for each i ∈ N, xi Pi ϕi(R,M).

A further weakening says that if the social endowment equals the sum of the ideal
amounts, then each person should receive his ideal amount.3

Unanimity: For each (R,M) ∈ RN × R+, if
∑
i∈N pi = M , then ϕ(R,M) = (pi)i∈N .

The next property is that no person can benefit by misreporting his preferences. In
the following definition, and later in the proofs of our results, given i ∈ N and a pair

Ri, R
′
i ∈ R, we place a T above i’s “true” preference relation (

T

Ri), and an F above a

“false” preference relation (
F

R′i).
Strategy-proofness: For each (R,M) ∈ RN ×R+, and each i ∈ N , there is no R′i ∈ R,

such that ϕi(
F

R′i, R−i,M)
T

Pi ϕi(
T

Ri, R−i,M).
A more demanding property is that no group of people can misreport in a way that

makes at least one of its members better off without making any of its members worse
off.
Group strategy-proofness: For each (R,M) ∈ RN × R+ and each S ⊆ N , there is

no R′S ∈ RS such that for each i ∈ S, ϕi(
F

R′S , R−S ,M)
T

Ri ϕi(
T

RS , R−S ,M) and there is

i ∈ S such that ϕi(
F

R′S , R−S ,M)
T

Pi ϕi(
T

RS , R−S ,M).
It turns out that group strategy-proofness is “too demanding” in the sense that it is

not compatible with even unanimity, the weakest of our efficiency notions.
Next we present two notions of fairness. First, no person “envies” another.

Envy-freeness: For each (R,M) ∈ RN × R+ there is no pair i, j ∈ N such that
ϕj(R,M) Pi ϕi(R,M).

The next is that people with identical preferences are treated identically.
Equal treatment of equals: For each (R,M) ∈ RN × R+, and each pair i, j ∈ N
such that Ri = Rj = R0, we have ϕi(R,M) I0 ϕj(R,M).

Envy-freeness implies equal-treatment of equals. We will show that, even equal treat-
ment of equals is incompatible with Pareto-efficiency. We propose another weakening of

3A stronger, but more appealing, version says that each person receives his ideal amount if the social
endowment is at least as large as the sum of the ideal amounts.
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envy-freeness that applies only to those people who receive an acceptable share. This
axiom can be interpreted as follows: after the social endowment is divided each person
shows up to receive his share only if he finds it acceptable and no person who shows up
envies any other person.
Awardee-envy-freeness: For each (R,M) ∈ RN × R+, there is no pair i, j ∈ N such
that ϕi(R,M) > li and ϕj(R,M) Pi ϕi(R,M).

Our final notion of fairness is that each person receives an amount that he finds at
least as desirable as an equal share of the social endowment.
Equal-division lower bound:4 For each (R,M) ∈ RN × R+, and each i ∈ N,
ϕi(R,M) Ri

M
|N | .

5

If, at an allocation x ∈ F (M), there is i ∈ N who receives an unacceptable amount,
then he is indifferent between receiving xi and receiving 0. So, he either does not take
it, or takes it and disposes of it. The planner may as well dispose of xi units of the good
himself and not give i anything. Similarly, when xi > pi, the planner may as well dispose
of xi − pi units of the good and give i only pi. This is expressed by the next axiom.

For each (R,M) ∈ RN×R+, define the welfare-equivalence class of x at (R,M),
WE(x,R,M), by setting WE(x,R,M) ≡ {y ∈ F (M) : for each i ∈ N, xi Ii yi} . If
WE(x,R,M) = {x}, then x is welfare-unique at (R,M). For each x ∈ F (M) such
that x is not welfare-unique at (R,M), there is x′ ∈ WE(x,R,M) such that for each
i ∈ N , if xi ≤ li then x′i = 0, if xi > pi then x′i = pi, and otherwise x′i = xi. Such x′

is the canonical representation of WE(x,R,M) at (R,M). If x is either welfare-
unique or the canonical representation of WE(x,R,M) at (R,M), then x is canonical
at (R,M).
Canonicity: For each (R,M) ∈ RN × R+, ϕ(R,M) is canonical at (R,M).

The next requirement is an application of the “replacement principle” (Moulin, 1987;
Thomson, 1997)6. If the preferences of one person change, then all others are affected
in the same direction: either each person finds his new share at least as desirable as his
original share, or each person finds his original share to be at least as desirable as his
new share.
Welfare-dominance under preference replacement: For each (R,M) ∈ RN ×
R, each i ∈ N and each R′i ∈ R, either for each j ∈ N \ {i}, ϕj(R′i, R−i,M) Rj
ϕj(Ri, R−i,M) or for each j ∈ N \ {i}, ϕj(Ri, R−i,M) Rj ϕj(R

′
i, R−i,M).

The following requirement is that if a person’s preferences change in a way that his
own component of the allocation remains the same, then others’ components should also
remain the same (Satterthwaite and Sonnenschein, 1981). While it appears technical,
this axiom is normatively appealing since it is implied by the combination of the previous
two axioms along with Pareto-efficiency.

Another interpretation of this axiom is that, alongside canonicity, it precludes a
particular kind of profitable misreporting by pairs of people: one person misreports his

4This axiom is often referred to as “individual rationality from equal division.”
5Analogous to awardee envy-freeness, an “awardee” version of this axiom can be defined as follows:

For each (R,M) ∈ RN × R+, for each i ∈ N , if ϕi(R,M) > li, then ϕi(R,M) Ri
M

|{j∈N :ϕj(R,M)>lj |}
.

Not only is the class of Pareto-efficient and awardee envy-free rules meeting the equal-division lower
bound non-empty, but every member satisfies the above axiom. Therefore, we do not study it (even
though it is not directly implied by the equal-division lower bound).

6For a survey, see Thomson (1999).
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preferences in a way that leaves his share unaffected, but another person is made better
off. This is still is weaker than group strategy-proofness since it does not even imply
strategy-proofness.
Non-bossiness: For each (R,M) ∈ RN × R+, each i ∈ N and each R′i ∈ R, if
ϕi(R

′
i, R−i,M) = ϕi(Ri, R−i,M) then ϕ−i(R

′
i, R−i,M) = ϕ−i(Ri, R−i,M).

Our final axiom is that small changes in the data of the problem should cause only
small changes in the chosen allocation. Let {(Rν ,Mν)}∞ν=1 be a sequence in RN × R+

with limit (R,M).7

Continuity: limν→∞ ϕ(Rν ,Mν) = ϕ(R,M).
We will show that no Pareto-efficient rule is continuous. The set of Pareto-efficient

allocation is ill behaved with regards to certain sequences: those where at least one
person’s preference relation is complete indifference only at the limit. We propose a
weaker version of continuity which ignores the aforementioned problematic sequences
and is compatible with Pareto-efficiency.
Weak continuity: If for each i ∈ N , for whom li ≥ min{pi,M}, there is ν∗ ∈ N such
that for each ν ≥ ν∗, lνi ≥ min{pνi ,Mν}, then limν→∞ ϕ(Rν ,Mν) = ϕ(R,M).

4. Rules

Each member of the first class of rules that we describe is associated with an ordering
over people. The person with highest priority takes the least of his peak and the endow-
ment as long as it is acceptable to him. Then, the person with second highest priority
takes the least of his peak and what remains as long as it is acceptable to him. We then
proceed to the person with third highest priority, and so on.8

Let I be the ordering i1, . . . , in of N . The sequential priority rule with respect
to I, SDI , is defined by setting for each (R,M) ∈ RN ×R+, SP I(R,M) ≡ x such that
for each k = 1 . . . , n,

xik ≡
{

min{M −
∑k−1
l=1 xil , pik} if min{M −

∑k−1
l=1 xil , pik} > lik , and

0 otherwise.

These Rules are Pareto-efficient, strategy-proof, welfare-dominant under preference
replacement, non-bossy, canonical, and weakly continuous. However, they violate awardee-
envy-freeness, the equal-division lower bound, group strategy-proofness, and continuity.

This class can be expanded by considering “conditional” priority orders: The identity
of the person with highest priority depends on the social endowment. The identity of the
person with second highest priority depends on the endowment, the identity of the first
person, and the quantity that he has taken. The identity of the third person depends on
the endowment, the identities of the first two people, and the quantities that they have
taken, and so on.

Members of this bigger class satisfy all of the same axioms as sequential priority, save
for weak continuity.

7Since each preference relation Ri ∈ R is uniquely identified by a pair (li, pi) ∈ R+, this is a sequence
in R2n+1.

8Members of this family of rules are similar to those proposed by Pápai (2001) and also studied by
Ehlers and Klaus (2003) and Hatfield (2009) for the problem of assigning multiple objects.
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Let I ≡ {ik}nk=1, where for each k = 1, . . . , n, ik : R+ ×Nk−1 × Rk−1+ → N , be such
that for each M ∈ R+ and each x ∈ Rn−1, we have a sequence {ik}nk=1 such that for each
k = 1, . . . , n, ik = ik(M, i1, . . . , ik−1, xi1 , . . . , xik−1

) /∈ {i1, . . . , ik−1}. The conditional
sequential priority rule with respect to I, CSP I , is defined by setting for each
(R,M) ∈ RN × R+, CSP I(R,M) ≡ x such that, for each k = 1, . . . , n, ik ≡ ik =
ik(M, i1, . . . , ik−1, xi1 , . . . , xik−1

) and

xik ≡
{

min{M −
∑k−1
l=1 xil , pik} if min{M −

∑k−1
l=1 xil , pik} > lik , and

0 otherwise.

The next rule is analogous to the well-known “uniform rule” for the classical problem
with single-peaked preferences (Bénassy, 1982; Sprumont, 1991). Define the uniform
rule, U , by setting, for each (R,M) ∈ RN × R+, and i ∈ N ,

Ui(R,M) ≡
{
pi if

∑
i∈N pi ≤M, or

min{pi, λ} otherwise,

where λ is such that
∑
i∈N Ui(R,M) = M .9

While the uniform rule is weakly Pareto-efficient, strategy-proof, envy-free, welfare-
dominant under preference replacement, non-bossy, and continuous, it is not Pareto-
efficient. In contrast with the corresponding rule for the classical setting, this rule is not
group strategy-proof.10

Members of the next class of rules are Pareto-efficient. Unfortunately, they are neither
strategy-proof nor envy-free.

Before we introduce this class of rules, define for each (R,M) ∈ RN × R+, the
efficient uniform coalitions at (R,M), EUC(R,M), by setting,

EUC(R,M) ≡

{
N ′ ⊆ N :

there is
λ ∈ R+

such that

i) for each j /∈ N ′,M −
∑

i∈N′ min{pi, λ} ≤ lj ,
and

ii) for each j ∈ N ′,min{pj , λ} > lj .

}
.

We show that EUC(R,M) 6= ∅.

Claim 1. For each (R,M) ∈ RN × R+, EUC(R,M) 6= ∅.

Proof: Suppose there is i ∈ N for whom li < min{pi,M}. Let {1, 2, . . . , k} ⊆ N
be such that l1 ≤ l2 ≤ · · · ≤ lk < M . By assumption, k ≥ 1. Start with {1}. If
M−min{p1,M} ≤ l2, then {1} ∈ EUC(R,M). Otherwise, {1} /∈ EUC(R,M). Suppose

that {1, 2, . . . , j} /∈ EUC(R,M). Then M −
∑j
i=1 min{pi,M} > lj+1. If {1, . . . , k} /∈

EUC(R,M), then k 6= n and M −
∑k
i=1 pi > lk+1 ≥ M , which is a contradiction. On

the other hand, if for each i ∈ N , li ≥ min{pi,M}, then EUC(R,M) = {∅}. 4

9Of course, the uniform rule is the logical (though, not always obvious) extension of the constrained
equal awards rule from bankruptcy problems to the division problem with single-peaked preferences.
The model studied here is, in some senses, between the two and we have chosen to fall on the uniform
rule side of the nomenclature fence.

10To see this, let R ∈ RN and i ∈ N be such that 0 < λ ≤ li and j ∈ N \{i} such that λ ∈ (lj , pj). Let

R′i ∈ R be such that p′i = 0. Then, 0 = ϕi(
F

R′i, R−i)
T

Ii ϕi(
T

Ri, R−i) = λ and since ϕj(
F

R′i, R−i) > λ > lj ,

ϕj(
F

R′i, R−i)
T

Pj ϕj(
T

Ri, R−i).
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A selector is a function, σ : RN × R+ → P(N),11 such that for each (R,M) ∈
RN × R+, σ(R,M) ∈ EUC(R,M). The efficient uniform rule with selector σ,
EUσ, is defined by setting, for each (R,M) ∈ RN × R+ and each i ∈ N ,

EUσi (R,M) ≡
{

min{pi, λ} if i ∈ σ(R,M), or
0 otherwise.

where λ is such that:

i) for each j /∈ σ(R,M),M −
∑
i∈σ(R,M) min{pi, λ} ≤ lj ,

ii) for each j ∈ σ(R,M), λ ≥ lj , and
iii) if

∑
i∈σ(R,M) min{pi, λ} < M then λ ≥ maxi∈σ(R,M){pi}.

Efficient uniform rules are Pareto-efficient, awardee-envy-free, and non-bossy. They are
not, however, strategy-proof, welfare-dominant under preference replacement, or envy-
free. In fact, as we will show, no Pareto-efficient rule is envy-free. Only some members
of this class are weakly continuous.

5. Results

We begin with a necessary and sufficient condition for a rule to meet the equal-division
lower bound.

Proposition 1. A rule, ϕ, meets the equal-division lower bound if and only if for each

(R,M) ∈ RN × R+, for each i ∈ N if li <
M
|N | then ϕi(R,M) ≥ min

{
pi,

M
|N |

}
.

Proof: Let (R,M) ∈ RN × R+ and i ∈ N be such that li <
M
|N | . By the equal-division

lower bound, ϕi(R,M) Ri
M
|N | . If ϕi(R,M) < M

|N | , then ϕi(R,M) Ii
M
|N | Ii pi. Thus,

ϕi(R,M) ≥ pi. If ϕi(R,M) < pi, then, since ϕi(R,M) Ri
M
|N | , ϕi(R,M) ≥ M

|N | .

Conversely, if for each (R,M) and each i ∈ N such that li <
M
|N | , ϕi(R,M) ≥

min{pi, M|N |}, then ϕi(R,M) Ri
M
N . For each i ∈ N such that li ≥ M

|N | ,
M
|N | Ii 0, so

ϕi(R,M) Ri 0 Ii
M
|N | . Thus, ϕ satisfies the equal-division lower bound. 2

Each rule is equivalent in “welfare terms” to a canonical rule. For each rule ϕ,
define its canonical equivalent, ϕ′, by setting, for each (R,M) ∈ RN × R+, and
for each i ∈ N,ϕ′i(R,M) ≡ 0 if ϕi(R,M) ≤ li, ϕ

′
i(R,M) ≡ pi if ϕi(R,M) > pi, and

ϕ′i(R,M) ≡ ϕi(R,M) otherwise.
Since Pareto-efficiency, envy-freeness, awardee-envy-freeness, and the equal-division

lower bound deal with a single preference profile and are stated in welfare terms, these
properties are inherited by a rule’s canonical equivalent. It is not as obvious that strategy-
proofness is inherited.

Lemma 1. The canonical equivalent of a strategy-proof rule is strategy-proof.12

11Given a set A, let P(A) be the power set of A.
12The converse is not true. Consider ϕ such that, for each (R,M) ∈ RN × R+, ϕ1(R,M) = M if

p1 ≤ M
2

and ϕ1(R,M) = M
2

otherwise, and ϕ−1(R,M) = (0, . . . , 0). Then ϕ’s canonical equivalent

is ϕ′ such that for each (R,M) ∈ RN × R+, ϕ′1(R,M) = max{p1, M2 } if l1 <
M
2

and ϕ′1(R,M) = 0
otherwise, and ϕ−1(R,M) = (0, . . . , 0). Though ϕ′ is strategy-proof, ϕ is not.
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Proof: Let ϕ′ be the canonical equivalent of ϕ. Then, for each (R,M) ∈ RN ×R+ and
each i ∈ N ,

ϕi(R,M) = ϕ′i(R,M) if li < ϕi(R,M) < pi.
ϕi(R,M) ≥ ϕ′i(R,M) otherwise.

Suppose that ϕ′ is not strategy-proof. Then, there is i ∈ N , and (R,M) ∈ RN × R+

such that

ϕ′i(
F

R′i, R−i,M)
T

Pi ϕ
′
i(

T

Ri, R−i,M).

Then, ϕ′i(R,M) < pi. If ϕ′i(R,M) > li, then ϕi(R,M) = ϕ′i(R,M) and if ϕ′i(R,M) = 0,
then ϕi(R,M) ≤ li. Thus,

max{ϕ′i(R,M), li} ≥ ϕi(R,M). (1)

Further,
ϕ′i(R

′
i, R−i,M) > max{ϕ′i(R,M), li}. (2)

Since ϕi(R
′
i, R−i,M) ≥ ϕ′i(R′i, R−i,M), by (1) and (2),

ϕi(R
′
i, R−i,M) ≥ ϕ′i(R′i, R−i,M) > max{ϕ′i(R,M), li} ≥ ϕi(R,M).

Then, ϕi(
F

R′i, R−i,M)
T

Pi ϕi(
T

Ri, R−i,M). So ϕ is not strategy-proof. 2

In light of Lemma 1, it is without loss of generality to study only canonical rules.
The characterizations that follow are thus in welfare terms.

Theorem 1. A rule is Pareto-efficient and awardee-envy-free if and only if it is an
efficient uniform rule.

Proof: Let ϕ be a Pareto-efficient and awardee-envy-free rule. Let σϕ be the selector
defined by setting, for each (R,M) ∈ RN × R+,

σϕ(R,M) ≡ {i ∈ N : ϕi(R,M) 6= 0}.

Let (R,M) ∈ RN × R+ and x ≡ ϕ(R,M). Suppose that x 6= EUσ
ϕ

(R,M).
Case 1: There is a pair i, j ∈ N such that 0 < xi < xj and xi < pi. In this case,
xj Pi xi. This violates awardee-envy-freeness.
Case 2: There is j such that xj = 0 and M −

∑
i∈N xi > lj . Let y ∈ RN+ be such that

yj = M −
∑
i∈N xi and y−j = x−j . For each i ∈ N, yi Ri xi and yj Pj xj . This violates

Pareto-efficiency.
Case 3: There is j ∈ N such that xj ∈ (0, lj ]. This violates canonicity.
Case 4: There is j ∈ N such that lj < xj < pj and

∑
i∈N xi < M . Let y ∈ RN+ be such

that yj = xj +M −
∑
i∈N xi and y−j = x−j . For each i ∈ N, yi Ri xi and yj Pj xj . This

violates Pareto-efficiency.
Thus, ϕ(R,M) = EUσ

ϕ

(R,M). 2

The axioms are independent. The canonical equivalent of the uniform rule is awardee-
envy-free but not Pareto-efficient, and that the sequential priority rules are Pareto-
efficient but not awardee-envy-free.

Combining Proposition 1 and Theorem 1, we have the following corollary.
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Corollary 1. A rule ϕ is Pareto-efficient, awardee-envy-free, and satisfies the equal-
division lower bound if and only if there is a selector σ such that for each (R,M) ∈
RN × R+, {

i ∈ N : li <
M

|N |

}
⊆ σ(R,M),

and ϕ = EUσ.

To prove the next characterization, we first establish that for each M ∈ R+, a Pareto-
efficient, strategy-proof, and non-bossy rule assigns the highest priority to a person who,
regardless of others’ preferences, receives the least of his peak and the endowment as
long as it is acceptable to him.

Lemma 2. Let ϕ be a Pareto-efficient, strategy-proof, and non-bossy rule. Then, for
each M ∈ R, there is i ∈ N such that for each R ∈ RN ,

ϕi(R,M) =

{
min{M,pi} if min{M,pi} > li
0 otherwise.

Proof: We prove this lemma by induction on n ≡ |N |.
We start with n = 2. Let R ∈ RN be such that l1 = l2 = 0 and p1 = p2 = M . Let

x ≡ ϕ(R,M). By Pareto-efficiency, x1 + x2 = M .
Claim: Either x1 = M or x2 = M .
Proof: If not, x1, x2 ∈ (0,M). Let R′ ∈ RN be such that l′1 = x1, l′2 = x2, and
p′1 = p′2 = M . Let x1 ≡ ϕ(R′1, R2,M). By strategy-proofness, x11 ≤ x1: Otherwise

x11 = ϕ1(
F

R′1, R2,M)
T

P1 ϕ(
T

R1, R2,M). By canonicity and since x11 ≤ x1 = l′1, we deduce
that x11 = 0. By Pareto-efficiency, x12 = M . That is, ϕ(R′1, R2,M) = (0,M). By an
analogous argument, ϕ(R1, R

′
2,M) = (M, 0).

Let x′ ≡ ϕ(R′,M). Since x1 + x2 = M , we cannot have x′1 ≥ l′1 = x1 and x′2 ≥
l′2 = x2. By Pareto-efficiency, either x′ = (0,M) or x′ = (M, 0). If x′ = (0,M),

since M = ϕ1(
F

R1, R
′
2,M)

T

P ′1 ϕ1(
T

R′1, R
′
2,M) = 0, this violates strategy-proofness. If

x′ = (M, 0), we reach a similar contradiction. This establishes our claim.
Let i ∈ N be such that xi = M . For each R′i ∈ R such that l′i < min{M,p′i},

by strategy-proofness, ϕ(R′i, Rj ,M) ≥ min{M,p′i}: otherwise, M = ϕi(
F

Ri, Rj ,M)
T

P ′i

ϕi(
T

R′i, Rj ,M). By Pareto-efficiency, ϕi(R
′
i, Rj ,M) ≤ min{M,p′i}. Thus, we have ϕi(R

′
1, Rj ,M) =

min{M,p′i} and ϕj(R
′
i, Rj ,M) = M −min{M,p′i}. By strategy-proofness, for each R′j ∈

R, ϕj(R′i, R′j ,M) ≤M−min{M,p′i}: otherwise we have ϕj(R
′
i,

F

R′j ,M)
T

Pj ϕj(Ri,
T

Pj ,M) =
M −min{M,p′i}. By Pareto-efficiency and canonicity, ϕi(R

′
i, R
′
j ,M) = min{M,p′i}. If

min{M,p′i} ≤ l′i, by canonicity, ϕi(R
′,M) = 0.

Thus, for each M ∈ R, there is i ∈ N such that for each R ∈ RN ,

ϕi(R,M) =

{
min{M,pi} if min{M,pi} > li
0 otherwise.

As an induction hypothesis, suppose that if |N ′| = n− 1 and ψ is a Pareto-efficient,
strategy-proof, and non-bossy rule defined for N ′, then for each M , there is i ∈ N ′ such
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that for each R ∈ RN ′ ,

ψi(R,M) =

{
min{M,pi} if min{M,pi} > li
0 otherwise.

We show that for each M ∈ R, there is i ∈ N such that for each R ∈ RN ,

ϕi(R,M) =

{
min{M,pi} if min{M,pi} > li
0 otherwise.

Let R ∈ RN be such that for each i ∈ N , li = 0 and pi = M . Let x ≡ ϕ(R,M). Since ϕ
is Pareto-efficient,

∑
j∈N xj = M .

Claim: There is i ∈ N such that xi = M .
Proof:
Case 1: There is j ∈ N such that xj = 0.

Let R̃j ∈ R be such that p̃j = 0. By canonicity, for each R−j ∈ RN\{j}, and each

M ∈ R+, ϕj(R̃j , R−j ,M) = 0. By non-bossiness,13 ϕ(R̃j , R−j ,M) = x. Now, define ψ
as a rule for N \ {j} by setting, for each (R−j ,M) ∈ RN\{j} × R,

ψ(R−j ,M) ≡ ϕ−j(R̃j , R−j ,M).

Since ϕ is Pareto-efficient, strategy-proof, and non-bossy, ψ inherits these properties. By
the induction hypothesis, there is i ∈ N \ {j} such that ψi(R−j ,M) = M . However, by
definition of ψ, we have ψ(R−j ,M) = x−j . Thus, there is i ∈ N such that xi = M .
Case 2: For each j ∈ N, xj ∈ (0,M).

Let R′ ∈ RN be such that for each j ∈ N, xj = l′j < p′j = M . For each j ∈ N ,

define xj ≡ ϕ(R′j , R−j ,M). By strategy-proofness, xjj ≤ xj = l′j : Otherwise xjj =

ϕj(
F

R′j , R−j ,M)
T

Rj ϕj(
T

Rj , R−j ,M) = xj . By canonicity, xjj = 0. By an argument

identical to the one made in Case 1, there is kj ∈ N \ {j} such that xjkj = M .
Let x′ ≡ ϕ(R′,M). Since

∑
j∈N xj = M , there is j ∈ N such that x′j ≤ xj = l′j . By

canonicity, x′j = 0. By an argument identical to the one made in Case 1, there is i ∈ N
such that x′i = M . Thus, for each j ∈ N \ {i}, ϕj(R′,M) = 0. In particular,

ϕki(R
′
i, R
′
ki , R

′
−{i,ki},M) = 0. (3)

As shown earlier, ϕ(R′i, Rki , R−{i,ki},M) = xi and xiki = M . Thus, for each j ∈
N \ {i, ki}, ϕj(R′i, Rki , R−{i,ki},M) = 0. Let j1, . . . , jn−2 be a labeling of N \ {i, ki}. By
strategy-proofness, ϕj1(R′i, Rki , R

′
j1
, R−{i,ki,j1},M) = 0: Otherwise,

ϕj1(R′i, Rki ,
F

R′j1 , R−{i,ki,j1},M)
T

Pj1 ϕj1(R′i, Rki ,
T

Rj1 , R−{i,ki,j1},M) = 0. By non-bossiness,

ϕ(R′i, Rki ,
F

R′j1 , R−{i,ki,j1},M) = xi. Repeating this argument n−3 times, ϕ(R′i, Rki , R
′
−{i,ki},M) =

xi. Thus, ϕki(R
′
i, Rki , R

′
−{i,ki},M) = M . By (3) and the definition of R′ki ,

M = ϕki(R
′
i,

F

Rki , R
′
−{i,ki},M)

T

P ′ki ϕki(R
′
i,

T

R′ki , R
′
−{i,ki},M) = 0.

13This is the first time we appeal to non-bossiness.
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This violates strategy-proofness. Thus, there is i ∈ N such that xi = M . This establishes
our claim.

Let R′ ∈ RN . To complete the proof of this lemma, we show that

ϕi(R
′,M) =

{
min{p′i,M} if min{p′i,M} > l′i
0 otherwise.

By Pareto-efficiency, if min{p′i,M} ≤ l′i, then ϕi(R
′,M) = 0. If not, we index the mem-

bers of N \{i} as {j1, . . . , jn−1}. By strategy-proofness, ϕj1(R′j1 , R−j1 ,M) = 0: Other-

wise, ϕj1(
F

R′j1 , R−j1 ,M)
T

Pj1 ϕ(
T

Rj1 , R−j1 ,M) = 0. Then, by non-bossiness, ϕ(R′j1 , R−j1 ,M) = x.
Repeating this argument n− 2 times, ϕ(R′−i, Ri,M) = x. That is, ϕi(R

′
−i, Ri,M) = M .

By strategy-proofness, ϕi(R
′,M) ≥ min{M,p′i}: Otherwise, M = ϕ(

F

Ri, R
′
−i,M)

T

P ′i

ϕi(
T

R′i, R
′
−i,M). Due to the feasibility constraint, ϕi(R

′,M) ≤ M and by canonicity,
ϕi(R

′,M) ≤ p′i. Thus, ϕi(R
′,M) = min{M,p′i}. 2

Lemma 2 gets us very close to a characterization of the conditional sequential priority
rules as the only Pareto-efficient, strategy-proof, and non-bossy rules. It says that for
each endowment, there is a person with highest priority who gets the least of his most
preferred quantities. After this, if we are left with more of the good to divide among the
remaining people, Lemma 2 can be applied again.

Theorem 2. A rule is Pareto-efficient, strategy-proof, and non-bossy if and only if it
is a conditional sequential priority rule.

Proof: We proceed by induction on n = |N |. If n = 2, the theorem follows directly
from Lemma 2. As an induction hypothesis, suppose the result holds for N ′ such that
|N ′| = n− 1.

Let ϕ be a Pareto-efficient, strategy-proof, and non-bossy rule defined for people in
N such that |N | = n. We will show that there is Iϕ such that ϕ = CSP Iϕ .
Step 1: Construction of Iϕ ≡ {ikϕ}n−2k=1 .

By Lemma 2, for each M ∈ R, there is i1 ∈ N such that for each R ∈ RN ,

ϕi1(R,M) =

{
min{pi1 ,M} if min{pi1 ,M} > li1
0 otherwise.

Let i1ϕ(M) ≡ i1. For each xi1 ∈ [0,M ], let R
xi1
i1
∈ R be such that p

xi1
i1

= xi1 and

l
xi1
i1

= 0. For each R̃−i1 ∈ RN\{i1}, by Lemma 3, ϕi1(R
xi1
i1
, R̃−i1 ,M) = xi1 .

By Pareto-efficiency and canonicity, for each M̃ ∈ R and each R̃−i1 ∈ RN\{i1},
ϕi1(R0

i1
, R̃−i1 , M̃) = 0.

Define the rule ψ(M,i1,xi1 ) for people in N \ {i1} by setting for each M ∈ R and each
R−i1 ∈ RN\{i1},

ψ(M,i1,xi1 )(R−i1 ,M) =

{
ϕ−i1(R

xi1
i1
, R−i1 ,M) if M = M − xi1

ϕ−i1(R0
i1
, R−i1 ,M) otherwise.

Because ϕi(R
0
i , R−i,M) = 0 and ϕ is Pareto-efficient, strategy-proof, and non-bossy,

ψ(M,i1,xi1 ) is well defined and inherits these properties. Thus, by the induction hypoth-

esis, there is I
ψ

(M,i1,xi1
) such that ψ(M,i1,xi1 ) = CSP

I
ψ
(M,i1,xi1

)
.
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Let i2ϕ(M, i1, xi1) ≡ i1
ψ

(M,i1,xi1
)(M − xi1) = i2. For each xi2 ∈ [0,M − xi1 ], let

i3ϕ(M, i1, i2, xi1 , xi2) ≡ i2
ψ

(M,i1,xi1
)(M − xi1 , i2, xi2) = i3. Proceeding this way, For each

xin−2
∈
[
0,M −

∑n−3
k=1 xik

]
, let

in−1ϕ (M, i1, . . . , in−2, xi1 , . . . , xin−2) ≡ in−2
ψ

(M,i1,xi1
)(M − xi1 , i2, . . . , in−2, xi2 , . . . , xin−2).

Since we can do this for each M ∈ R and each Ri1ϕ(M) ∈ R, we have a complete
description of Iϕ.
Step 2: Verification of ϕ = CSP Iϕ .

Let (R,M) ∈ RN × R+. By definition of i1 ≡ i1(M),

xi1 ≡ ϕi1(R,M) =

{
min{M,pi1} if min{M,pi1} > li1
0 otherwise.

}
= CSP

Iϕ
i1

(R,M).

Further, by definition of ψ(M,i1,xi1 ),

ϕ−i1(R,M) = ψ(M,i1,xi1 )(R−i1 ,M−xi1) = CSP
I
ψ
(M,i1,xi1

)
(R−i1 ,M−xi1) = CSP

Iϕ
−i1(R,M).

Thus, ϕ(R,M) = CSP Iϕ(R,M). Since this holds for each (R,M) ∈ RN × R+, we have
verified that ϕ = CSP Iϕ . 2

The axioms are independent. The canonical equivalent of the uniform rule violates
only Pareto-efficiency. Certain efficient uniform rules violate only strategy-proofness.
Next, we define a rule ϕ that violates only non-bossiness. Let I ≡ {ik}nk=1 and J ≡
{jk}nk=1 be such that i1 6= j1 and {i1, . . . , in−1} = {j1, . . . , jn−1} = N \ {1}. Define ϕ by
setting, for each (R,M) ∈ RN × R+,

ϕ(R,M) =

{
SP I(R,M) if l1 < min{p1,M}
SP J(R,M) otherwise.

Notice that ϕ is also weakly continuous.

Remark 2. Strategy-proofness and Pareto-efficiency are incompatible with equity. Every
Pareto-efficient and canonical rule is non-bossy whenever |N | = 2. Lemma 2 says that
there is always one person who, independently of the preference profile, is satiated to
the extent possible. It is in this sense that the combination of strategy-proofness and
Pareto-efficiency precludes any meaningful notion of equity. ◦

We characterize the weakly continuous members of conditional sequential priority
below.

Proposition 2. A conditional sequential priority rule is weakly continuous if and only
if it is a sequential priority rule.

Proof: First we show that each sequential priority rule is weakly continuous. Let I
be the ordering i1, i2, . . . , in of N . Let {(Rν ,mν)}∞ν=1 be a sequence in RN × R+ such
that,CSP

i) limν→∞(Rν ,mν) = (R,M) ∈ RN × R+ and
ii) for each i ∈ N, if li ≥ min{pi,M}, then there is ν∗ ∈ N such that

for each ν ≥ ν∗, lνi ≥ min{pνi ,Mν}.
13



If li1 ≥ min{M,pi1}, then by ii), there is ν∗ ∈ N such that for each ν ≥ ν∗, lνi1 ≥
min{pνi1 ,M

ν}, and so SP Ii1(Rν ,Mν) = 0. Thus,

lim
ν→∞

SP Ii1(Rν ,Mν) = 0 = SP Ii1(R,M).

If li1 < min{M,pi1}, then

lim
ν→∞

SP Ii1(Rν ,Mν) = lim
ν→∞

min{pνi1 ,M
ν} = min{pi1 ,M} = SP Ii1(R,M).

This argument can be repeated for i2, . . . , in−1, and in ∈ N \ {i1, . . . , in−1}.
Next, we prove that if I ≡ {ik}n−2k=1 is such that CSP I is weakly continuous, then

for each pair M,M ′ ∈ R+ and each pair x, x′ ∈ RN+ such that
∑n−2
i=1 xi ≤ M and∑n−2

i=1 x
′
i ≤M ,

i1(M) = i1 = i1(M ′),
i2(M, i1, xi1) = i2 = i2(M ′, i1, x

′
i1

),
...

in−1(M, i1, . . . , in−2, xi1 , . . . , xin−2
) = in−1 = in−1(M ′, i1, . . . , in−2, xi1 , . . . , x

′
in−2

),

Let R ∈ RN be such that for each i ∈ N, li = 0 and pi = max{M,M ′}. By definition of
CSP I andR, for each M̃ ≤ max{M,M ′}, CSP I(R, M̃) ∈ {(M̃, 0, . . . , 0), . . . , (0, . . . , 0, M̃)}.
Since for each i ∈ N , li = 0, weak continuity implies that CSP I(R, M̃) varies continu-
ously in M̃ . Thus, i1(M) = i1(M ′) = i1.

For each M̃ ∈ R+ and each x̃i1 ∈ R+ such that x̃i1 ≤ M̃ , let R
x̃i1
i1
∈ R be such that

l
x̃i1
i1

= 0 and p
x̃i1
i1

= x̃i1 . Then CSP Ii1(Rx̃i1 , R−i1 , M̃) = x̃i1 and CSP I−i1(R
x̃i1
i1
, R−i1 , M̃) ∈

{(M̃−x̃i1 , 0, . . . , 0), . . . , (0, . . . , 0, M̃−x̃i1)}. Since for each i ∈ N \{i1}, li = 0, weak con-

tinuity implies that CSP I−i1(R
x̃i1
i1
, R−i1 , M̃) varies continuously with M̃ and x̃i1 . Thus,

i2(M, i1, xi1) = i2(M ′, i1, x
′
i1

) = i2.
Repeating this argument completes the proof. 2

The following is a corollary of Proposition 2 and Theorem 2.

Corollary 2. A rule is Pareto-efficient, strategy-proof, non-bossy and weakly continu-
ous if and only if it is a sequential priority rule.

The axioms are independent. The canonical equivalent of the uniform rule vio-
lates only Pareto-efficiency. There are efficient uniform rules that violate only strategy-
proofness. The rule ϕ defined to show independence of the axioms in Theorem 2 violates
only non-bossiness. Finally, each conditional sequential priority rule that is not an (un-
conditional) sequential priority rule violates only weak continuity.

We end this section with a list of incompatibilities.

Proposition 3. Each of the following sets of axioms is incompatible:

1. Pareto-efficiency and equal treatment of equals.

2. Pareto-efficiency and envy-freeness.

3. Pareto-efficiency and continuity.
14



4. Pareto-efficiency, strategy-proofness, and awardee-envy-freeness.

5. Pareto-efficiency, strategy-proofness, and the equal-division lower bound.

6. Pareto-efficiency, strategy-proofness and welfare-dominance under preference re-
placement.

7. Group strategy-proofness and unanimity.

Proof:14 Let ϕ be Pareto-efficient. Let (R,M) ∈ RN ×R+ be such that for each i ∈ N ,
li = M

n and pi = M . By Pareto-efficiency, there is i ∈ N such that ϕi(R,M) > li = M
n .

This means that there is j ∈ N \ {i} such that ϕj(R,M) < M
n . Thus, ϕ violates equal

treatment of equals, and establishes incompatibility 1. Since envy-freeness implies equal
treatment of equals, we also have incompatibility 2.

Let R ∈ RN be such that for each i ∈ N, pi = M and li = 0. By Pareto-efficiency,
there is i ∈ N such that ϕi(R,M) > li. Define ri : [0, 1] → R by setting, for each
t ∈ [0, 1], ri(t) = Rti ∈ R associated with pti = M and lti = tM. Then, ri(0) = Ri and ri(1)
is associated with l1i = M . Define γ : [0, 1]→ [0,M ] by setting, for each t ∈ [0, 1], γ(t) ≡
ϕi(ri(t), R−i,M). Then, γ(0) > 0. Since ri(1) is associated with lti = M , and for each
j ∈ N \ {i}, lj = 0 and pj = M , by Pareto-efficiency, γ(1) = ϕi(ri(1), R−i,M) = 0.
Further, by Pareto-efficiency since for each j ∈ N \ {i}, lj = 0 and pj = M , there is no
t ∈ [0, 1] such that γ(t) ∈ (0, tM ]. So γ, and thus ϕ, is discontinuous. This establishes
incompatibility 3.

We show incompatibilities 4. and 5. for |N | = 2. The arguments generalize easily
to |N | > 2. Suppose that ϕ is strategy-proof in addition to being Pareto-efficient. Let
N ≡ {1, 2} and M ≡ 6.

Suppose that ϕ is awardee-envy-free. Let R ∈ RN be such that l1 = l2 = 0 and p1 =
p2 = 6. By Pareto-efficiency and awardee-envy-freeness, ϕ(R,M) ∈ {(0, 6), (3, 3), (6, 0)}.
If ϕ(R,M) = (0, 6), then let R′2 ∈ R be such that l′2 = 0, p′2 = 5. By strategy-

proofness, ϕ2(R1, R
′
2,M) ≥ 5: otherwise, 6 = ϕ2(R1,

F

R2,M)
T

P ′2 ϕ2(R1,
T

R′2,M). By
Pareto-efficiency, ϕ(R1, R

′
2,M) = (1, 5). But this violates awardee-envy-freeness at

(R1, R
′
2). By an analogous argument, ϕ(R,M) 6= (6, 0). Thus, ϕ(R,M) = (3, 3). Now

let R1 ∈ R be such that l1 = 2 and p1 = 5. By strategy-proofness, ϕ1(R1, R2,M) = 3.
Let R2 = R1. Again, by strategy-proofness, ϕ(R,M) = (3, 3). Let R̃1 ∈ R such that
l̃1 = 4 and p̃1 = 5. By strategy-proofness, ϕ1(R̃1, R2,M) ≤ 3. By Pareto-efficiency,
ϕ2(R̃1, R2,M) ≥ 5. By an analogous argument, letting R̃2 = R̃1, ϕ1(R1, R̃2,M) ≥ 5.
Finally, by Pareto-efficiency, either ϕ1(R̃,M) ≥ 5 or ϕ2(R̃,M) ≥ 5. However, if

ϕ1(R̃,M) ≥ 5, then ϕ2(R̃1,
F

R2,M)
T

P̃2 ϕ2(R̃1,
T

R̃2,M). Thus, ϕ2(R̃,M) ≥ 5. Since

ϕ1(
F

R1, R̃2,M)
T

P̃1 ϕ2(
T

R̃1, R̃2,M), this violates strategy-proofness and establishes incom-
patibility 4.

Suppose that ϕ meets the equal-division lower bound. Let R ∈ RN be such that
l1 = l2 = 3 and p1 = p2 = 6. By Pareto-efficiency, ϕ(R,M) ∈ {(6, 0), (0, 6)}. If
ϕ(R,M) = (0, 6), then let R′1 ∈ R be such that l′1 = 0 and p′1 = 6. By the equal-
division lower bound, ϕ1(R′1, R2,M) ≥ 3 and so ϕ2(R′1, R2,M) ≤ 3. By Pareto-efficiency,

ϕ(R′1, R2,M) = (6, 0). Then, 6 = ϕ1(
F

R′1, R2,M)
T

Pi ϕ1(
T

R1, R2,M) = 0. Thus, ϕ violates

14The proofs of 6. and 7. are available from the author upon request.
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strategy-proofness. The case where ϕ(R,M) = (6, 0) is analogous. This establishes
incompatibility 5. 2

6. Conclusion

Equal treatment of equals, and therefore envy-freeness, is incompatible with Pareto-
efficiency. Yet, other axioms such as awardee envy-freeness and the equal-division lower
bound are compatible with it. However, none of these can be imposed together with
Pareto-efficiency and strategy-proofness. The implication of Theorem 2 is that if we insist
on both Pareto-efficiency and strategy-proofness, then meaningful concepts of fairness
are untenable. If we give up on strategy-proofness, Corollary 1 is a characterization of all
Pareto-efficient and awardee-envy-free rules that satisfy the equal-division lower bound.

The results presented here are reminiscent of those found in the literature on prob-
lems with discrete goods such as the allocation of objects. This is particularly true of
Theorem 2 (Pápai, 2001; Ehlers and Klaus, 2003; Hatfield, 2009). In discrete environ-
ments, a way to recover equity is by randomization (Hofstee, 1990). We leave the study
of randomized rules for future work.

It is easy to extend the definitions of rules presented here to the natural variable-
population environment. In addition to the axioms presented in the main text, some
interesting axioms in such an environment are “consistency” (Balinski and Young, 2001;
Thomson, 1988), “population monotonicity” (Thomson, 1983a,b), and “replication in-
variance” (Thomson, 1997). Following are a few results that can be shown:15

1. A conditional sequential priority rule is consistent if and only if it is a sequential
priority rule.

2. No conditional sequential priority rule is population monotonic.

3. Pareto-efficiency and replication invariance are incompatible.
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