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Abstract

We study rules for choosing between two alternatives when people may be indifferent
between them. We specify two strategic requirements for groups of people. The first,
group strategy-proofness, says that manipulations by groups ought not make every mem-
ber of the group better off. The second, strong group strategy-proofness, says that such
manipulations ought not make at least one member of the group better off without mak-
ing another worse off. Our main result is a characterization of “consensus” rules and
“constant” rules as the only strongly group strategy-proof rules when there are more
than two people.
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1. Introduction

We study rules for choosing between two alternatives when the people involved may
be indifferent between them. In particular, we consider the implications of requiring
that a rule cannot be profitably manipulated by groups of people. We specify such a
requirement in two different ways: Group strategy-proofness says that no group can
collude to misreport its preferences in a way that makes every member better off; Strong
group strategy-proofness says that no group can collude to misreport its preferences in
a way that makes at least one member of the group better off without making other
members worse off.

If a rule is strongly group strategy-proof then it is obviously group strategy-proof.
Rules that satisfy either of these requirements are clearly strategy-proof.

There are many settings where groups make binary choices. Decisions regarding
whether or not to convict a defendant, confirm an appointee, or implement a project are
only a few examples. With few exceptions (Larsson and Svensson, 2006) most of the
literature has assumed away indifference. However, there are real-world situations where
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people’s preferences do exhibit indifference. If preferences are based on coarse descrip-
tions, there may be insufficient information to break ties. Alternatively, if preferences are
based on checklists of criteria, distinct alternatives satisfying exactly the same criteria
are equivalent. When preferences do not involve indifference, group strategy-proofness
is, by definition, equivalent to strong group strategy-proofness.

A class of rules that generalizes “voting by committees” (Barbera et al., 1991), which
we refer to as voting by z-decisive sets,? consists of all rules that are strategy-proof and
onto (Larsson and Svensson, 2006).

We show that, for this model, every strategy-proof rule is group strategy-proof
(Proposition 1) but not necessarily strongly group strategy-proof.> Our main result is
a characterization of “consensus” rules and “constant” rules as the only strongly group
strategy-proof rules (Corollary 1). Since constant rules are the only ones to violate
“onto-ness,” we establish our result by showing that there are, in welfare terms, only two
rules that are strongly group strategy-proof and onto:

1. Choose the first alternative if every person finds it to be at least as desirable as
the other. Otherwise, pick the second alternative.

2. Choose the first alternative if at least one person finds it to be at least as desirable
as the other. Otherwise, pick the second alternative.

This result is specific to settings with exactly two alternatives to choose from. When
there are at least three alternatives, only dictatorial rules are strategy-proof and onto
(Gibbard, 1973; Satterthwaite, 1975; Beja, 1993). While such rules are group strategy-
proof, they are not strongly group strategy-proof. This establishes that strong group
strategy-proofness is incompatible with onto-ness.

The remainder of the paper is organized as follows. We present the model in Section 2.
We formally describe the relevant axioms in Section 3. In Section 4, we describe several
classes of rules. We prove our results in Section 5 and conclude in Section 6

2. The Model

Let N be a set of people and O = {a, b} be a set of two possible outcomes. Each
person in N has a preference relation over O: he either prefers a, prefers b, or is indifferent
between them. Let R be the set of these three preference relations.

For each i € N, let R;€ R denote i’s preference relation. For each pair, x,y € O,
if ¢ finds = to be at least as good as y, we write @ R; y. If he prefers = to y, we write
x P; y and if he is indifferent between the two, x I; y.

A problem is described by a profile R € RY.

For each R € RY, we use R_; to denote the preference relations of all but i. For
each S C N, we denote the preferences of those in S by Rg, and those not in S by R_g.
We denote the set of all sub-profiles of preferences for people in S by RS.

For each R € R, let N4 (R) be the set of people who prefer a to b at the preference
profile R. Similarly, let Np(R) be the set of people who prefer b to a, and let Ngp(R)
be the set of people who are indifferent between a and b.

A rule, ¢ : RN — O, selects an outcome for each profile of preferences.

2Larsson and Svensson (2006) call these “voting by extended committees.”
3For instance, rules like majority rules and serial dictatorship rules (Section 4) are group strategy-
proof but not strongly group strategy-proof.
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3. Axioms

In this section, we list some requirements on rules. Let ¢ be a rule.

Our first requirement is that each alternative be chosen for some profile of preferences.
Onto-ness: There is a pair R?, R® € R such that p(R?®) = a and p(R’) = b.

Since there are exactly two alternatives, a rule violates this axiom if and only if it
picks the same alternative at every profile. Requiring onto-ness, thus, only excludes rules
that are maximally unresponsive preferences in this sense.

The next requirement is that no person can benefit by misreporting his preferences.
Strategy-proofness: For each R € RY, there is no i € N for whom there is R} € R
such that (R, R_;) P; ¢(R;,R_;). If such an i € N and R} € R exist, we say that
¢ manipulates ¢ at R via R].

Our final requirements are two notions of immunity to collusive misreporting of pref-
erences. First, no group can collude to misreport its preferences in a way that makes
every member better off.

Group strategy-proofness: For each R € RY, there is no S C N for which there is
R € R® such that, for each i € S, o( s R_g5) P; o(Rg,R_g). If such an S C N and
Ry € RY exist, we say that S strongly manipulates ¢ at R via Rj.

The second notion is that no group can collude to misreport its preferences in a way
that makes at least one member better off without making other members worse off.
Strong group strategy-proofness: For each R € RY, there is no S C N for which
there is Ry € R® such that, for each i € S, (R, R_s) R; ¢(Rs, R_g) and for some
i€S, p(Ry, R_s) Pi o(Rs, R_g). If such an S C N and Ry € R® exist, we say that S
manipulates ¢ at R via Rj .

4. Rules

For each x € O, define the constant rule at =, K%, by setting, for each R € RY,
K*(R) = .

Since they are entirely unresponsive to preferences, constant rules are strongly group
strategy-proof. However, they are the only rules that are not onto.

The next class of rules express the idea that one of the two alternatives is favored
(perhaps as a “status quo”) and the other is chosen only if every person agrees. Such
rules are common in the real world.* For each pair di, ds € O, define the consensus rule
with disagreement-default d; and indifference-default dy, C%92 by setting, for
each R € RV,

a if Ny(R) # @ and Ny(R) = &,
Cd2 (R = b if Ny(R) =@ and Ny(R) # @,

dy  if Ny(R) # @ and Np(R) # @, and

dy if Ny(R) =@ and Ny(R) = @.

Consensus rules are strongly group strategy-proof (Lemma 1) and onto.

4An important example is the requirement of unanimous verdicts for criminal jury trials in many
jurisdictions. That is, for such trials, the defendant is not convicted if even a single member of the jury
doubts his guilt.
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Remark 1. There are essentially only two consensus rules: one with disagreement-
default a and the other with disagreement-default b. This is because the choice of
indifference-default, ds, has no implications on welfare as it only matters when every
person is indifferent between a and b. o

Let < be an ordering over N. Suppose 1 < 2 < --- < n. Further, let ¢ € O. Define
the serial dictatorship rule with respect to ordering < and tie-breaker ¢, D%,
by setting, for each R € RY,

a if1€ Ny(R),

b if 1€ Ny(R),

a if 1 € Ng(R) and 2 € N,(R), and
D¥R)=1{ b if1e Nuy(R) and 2 € Ny(R),

t if for each Ny(R) = N.

Serial dictatorship rules are group strategy-proof and onto, but not strongly group
strategy-proof.® o
Define the Majority rule, M, by setting, for each R € RY,

=

@ i [Nu(R)| 2 [No(R)] and
() = { bt INoR)| < [N

The majority rule is group strategy-proof and onto, but not strongly group strategy-
proof.

A common feature of the strategy-proof and onto rules above is that there are groups
(any group that includes half of N \ N,(R) for M, {1} for D=, N for C®42  and so
on) who can guarantee that a is chosen. That is, they can induce the rule to choose a if
each of them states a preference for it. We call such groups a-decisive.® We generalize
this idea by specifying families of groups that are decisive for one of the two alternatives.
For each M C N, a family of a-decisive sets at M, Fp;, is a family of subsets of M,
satisfying the following two properties:

1. Non-emptiness: if M # @, then Fy; # @ and @ ¢ Fpr. If M = &, then Fpy = 2.
2. Closedness under expansion: For each S € Fpy and T C M, if S C T, then
T € Fur, as shown in Figure 1.

SEJT"M:>T€JT"M,

Figure 1: The closedness under expansion property in the definition of a family of a-decisive
sets.

5Though, if |N| = 2, they are strongly group strategy-proof.
6We could equivalently work with b-decisive sets.
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A collection of a-decisive sets, F = {Fu}mcn, is a collection of families of a-
decisive sets indexed by subsets of N satisfying the following properties for each M C N
and each i € M, as shown in Figure 2:7

L. If S € Fyrand i ¢ S, then S € Fyp\ ;3. That is, if S is decisive at M, then S is
decisive at M \ {i}.

2. If SU{i} ¢ Far, then S & Fap(i3- That is, if SU {4} is not decisive at M, then S
is not decisive at M \ {i}.

i
¢S €Fuy=S€EFunp.
&) 4 1ESEFu=SE T

Figure 2: The two properties that a collection of a-decisive sets satisfies for each M C N and
each ¢ € M.

For each F and each t € O, define voting by a-decisive collection F and tie-
breaker t, V. DC%>t by setting, for each R € RY,

t if Nap(R) = N
VDC]:’t(R) = a lf Na(R) S IN\Nab(R)
b otherwise.

Rules in this class are onto and group strategy-proof. In fact, they are the only ones
that are onto and strategy-proof (Larsson and Svensson, 2006).%

Remark 2. It is easy to see that consensus rules, serial dictatorship rules, and majority

rules are all instances of voting by a-decisive collection rules. For instance, we can define
C

FC such that VDCT b = C%?, by setting, for each M C N such that M # @,

FSG={M': M C M and M’ # &}.

Similarly, we can define FM guch that M = VDC}—W’“, by setting, for each M C N such
that M # @, -
Fyl={M':M' C M and |M'| > |M\ M'|}.

"For another context where the idea of collections of decisive sets plays an important role, see Man-
junath (2011).

8These rules are equivalent to voting by extended committees defined by Larsson and Svensson (2006)
(page 278). The only difference between their definition and ours is notation.
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5. Results

Our first proposition is the equivalence of strategy-proofness and group strategy-
proofness. This is a corollary of the main results in Le Breton and Zaporozhets (2009)
and Barbera et al. (2010). However, we provide a direct proof for this model.

Proposition 1. Fvery strategy-proof rule is group strategy-proof.

Proof: Let ¢ be a strategy-proof rule. Define a collusive group as S C N for which
there are R € RY and Ry € RS such that S strongly manipulates ¢ at R via R..

By strategy-proofness, no collusive group consists of a single person. Suppose there
is no collusive group of size k. Let S C N be a collusive group of size k+ 1. Without loss
of generality, suppose ¢(R) = b. Then, S C N,(R). Let i € S. By assumption S\ {i} is
not collusive. So @(Rg\{i}, R;,R_g) = b. By strategy-proofness (R, R_s) = b. This
contradicts the definition of S. O

The only strategy-proof and onto rules are voting by a-decisive collections (Larsson
and Svensson, 2006). We restate this below.

Theorem 1. Only VDC-rules are strategy-proof and onto.

Remark 3. Recall that the only rules that are not onto are constant rules. These are
trivially group strategy-proof. Combining this with Theorem 1, we can indirectly verify
the equivalence of strategy-proofness and group strategy-proofness by checking that each
rule in the class of voting by a-decisive collections is group strategy-proof. o

We now show that consensus rules are the only strongly group strategy-proof and
onto rules. We begin by showing that they are, in fact, strongly group strategy-proof.

Lemma 1. For each pair di,ds € O, C%+? js strongly group strategy-proof.

Proof: Suppose there are S C N, R € RY, and Ry € RS such that S manipulates
Ch®2 at R via RYy. Then, C1% (R, R_g) # C™%(R) and Ny (R) # N.

If C%42(R) = dy, then there is i € Ny, (R) and i ¢ S. Thus, Ny, (R, R_s) # 9. So,
Ci42 (R R_g) = dy. This contradicts C992(R) # C4-% (R, R_g).

Thus, C%4+%(R) # dy. By definition of C%:42 N, (R) = @ and for each i € N,
Cid2(R) R; C4%2 (R, R_g). This contradicts the assumption that S manipulates
Ch:®2 at R via R. O

The following lemma establishes that a rule is both strongly group strategy-proof
and onto if and only if it is a consensus rule. However, this result, and those that follow
from it, only holds when there are more than two people. When there are two people,
serial dictatorship rules also satisfy these properties (Barbera et al., 2011).

Lemma 2. For |N| > 2, if ¢ is strongly group strategy-proof and onto, then there is a
pair dy,dy € O such that ¢ = Oz,

Proof: Let R € RY be such N,(R) = {1}, Ny(R) = {2}, and Ngy(R) = N \ {1,2}. Let
dy = ¢(R). Without loss of generality, suppose that d; = a.
Let R € RY be such that N, (R) = N. Let dy = ¢(R).

We show that for each R € RN, p(R) = C»%(R). There are three cases:
6



Case 1: Ny (R) # ©.
We show that ¢(R) = a. Suppose, instead, that ¢(R) = b. There are three sub-cases:
Case 1.1: 1 € N, (R). For each i € N\ {1, 2},

b= @(R) I; (R, R-1) = ¢(R) = a,and

b=(R) Py o(R1,R_1) = ¢(R) = a.

This violates strong group strategy-proofness: N \ {1} manipulates ¢ at R via R_;.
Case 1.2: 1 € Ngp(R). Let R} € R be such that a P| b. Let R’ = (R}, R_1). By
Case 1.1, ¢(R’) = a. However,

a=@(Ry,R_1) I o(R) =1,

and for each ¢ € N,(R),
a=¢(Ry,R-1) Pi p(R) =0

This violates strong group strategy-proofness: N,(R) U {1} manipulates ¢ at R via
(R, BN, (r))-

Case 1.3: 1 € Np(R). Since N,(R) # @, let k € No(R). Let R' € R" be such that
No(R') = {k}, Noo(R') = {1}, and Ny(R') = N \ {1,k}. Thus, R, = Ry. By Case 1.2,
¢(R') = a. However,

b= (R) = ¢(Ri, Ri) Iy ¢(Ry, R_y) = ¢(R') = a,
and for each i € N\ {1, k},
b= @(R) = ¢(Ry, R_y) P| ¢(Ry, R_}) = p(R) = a.

This violates strong group strategy-proofness: N \ {k} manipulates p at R’ via R_j.
Case 2: N4(R) = @ and Np(R) # @.

We show that ¢(R) = b. Suppose, instead, that ¢(R) = a. Since ¢ is onto, there
is R” € RN such that ¢(R") = b. This is violates strong group strategy-proofness: N
manipulates ¢ at R via RP.
Case 3: Ny (R) = @ and Np(R) = .

Since Ngp(R) = N, by definition of da, p(R) = da. O

Combining Lemmas 1 and 2, we have the following theorem.

Theorem 2. For |N| > 2, only consensus rules are strongly group strategy-proof and
onto.

From this theorem, since only constant rules are not onto, we have the following
corollary, which is our main result.

Corollary 1. For |N| > 2, Only consensus and constant rules are strongly group
strategy-proof.



6. Conclusion

The sole axiom imposed in our main result (Corollary 1) is strong group strategy-
proofness. This axiom is so strong that, when there are more than two people, it rules
out all but two constant rules and (essentially) two consensus rules. None of these rules
are sensitive to the identities of people. That is, they are “anonymous.” It is notable
that the formulation of strong group strategy-proofness does not (in any obvious way)
imply anonymity. Yet, as we see from Corollary 1, anonymity is implied by it.
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