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Abstract

We consider a model where each agent has an outside option of privately known
value. We show that one strategy-proof and individually rational mechanism Pareto-
improves another if and only if it expands the set of participants. Corollaries in-
clude: a sufficient condition for a mechanism to be on the Pareto-efficient frontier of
strategy-proof mechanisms; uniqueness of strategy-proof Pareto-improvements un-
der true preferences over certain normatively meaningful benchmark allocation rules;
and a characterization of the pivotal mechanism.
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1 Introduction

We consider mechanisms that choose an allocation as a function of agents’ prefer-

ences. In our model, each allocation is associated with a fixed set of participants.1 A
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Ünver, Rodrigo Velez, Dan Walton, Alexander Westkamp, Alexander Wolitzky, and Bumin Yenmez for
helpful comments and discussions. We also thank seminar audiences at the University of Rochester, the
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de Montréal, and participants at numerous conferences for their feedback. We are also grateful for the
helpful suggestions of the editor and two anonymous referees.

1 Instances of the model include object allocation (with priorities) [Hylland and Zeckhauser, 1979, Ab-
dulkadiroğlu and Sönmez, 2003], matching with contracts [Hatfield and Milgrom, 2005], excludable public
goods [Jackson and Nicolò, 2004], and more.
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non-participant at an allocation consumes his outside option. A mechanism is strategy-

proof if, at each profile of preferences, no agent is able to beneficially misreport his pref-

erences. It is individually rational if, at each profile of preferences, no participant prefers

his outside option to the chosen allocation.

We show the equivalence of two binary relations over strategy-proof and individu-

ally rational mechanisms. The first is the Pareto-improvement relation: mechanism ϕ

(weakly) Pareto-improves mechanismϕ′ if, at each profile of preferences, each agent finds

the choice of ϕ at least as desirable as the choice of ϕ′. The other is the participation-

expansion relation: ϕ (weakly) participation-expands ϕ′ if, at each profile of preferences,

each participant at the choice of ϕ′ is a participant at the choice of ϕ. Therefore, the re-

quirements of strategy-proofness and individual rationality contain enough information

about preferences to ensure that a comparison that makes no reference to preferences

(participation-expansion) is equivalent to one that does (Pareto-improvement).2

We make three assumptions on preferences. Firstly, we rule out externalities on non-

participants. So, if an agent participates at neither allocation α nor at allocation β, then

he is indifferent between α and β. Secondly, only to show that participation-expansion

implies Pareto-improvement, we assume the range of values that an agent’s outside option

may take are on the order of what the mechanism may offer him as a participant. We call

this second assumption “richness of the outside option.” It ensures that the (upward)

movement of an agent’s outside option in his preference is essentially unrestricted. Since

how an agent compares his outside option to the various alternatives as a participant

is often private information, this is natural in many applications. Finally, only to show

that Pareto-improvement implies participation-expansion, we assume that no agent is

indifferent between his outside option and any allocation at which he participates. We

call this final assumption “no indifference with the outside option.”

We point out three useful corollaries of our main result:

1. Say that a pair of mechanisms, ϕ and ϕ′, are participation-equivalent if, for each

profile of preferences, the allocation chosen by ϕ has the same participants as the

allocation chosen by ϕ′. Given no externalities on non-participants and richness of
the outside option, if a pair of individually rational and strategy-proof mechanisms are
participation-equivalent, then they are also welfare-equivalent. A further corollary is

a simple, yet novel, characterization of the pivotal mechanism for the problem of

strategy-proof social choice with continuous transfers.

2 To our knowledge, the only other result relating the Pareto-improvement relation to participation is
for the probabilistic allocation of objects: strict Pareto-improvement implies strict participation-expansion
[Erdil, 2014].
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2. Say that an allocation is Pareto-constrained participation-maximal if every al-

location that strictly expands the set of participants makes some agent worse

off. Say that a mechanism is strategy-proofness-constrained Pareto-efficient if no

strategy-proof mechanism strictly Pareto-improves it. Given our three assump-
tions, a sufficient condition for a strategy-proof and individually rational mechanism
to be strategy-proofness-constrained Pareto-efficient is that it always selects a Pareto-
constrained participation-maximal allocation. This implies the strategy-proofness-

constrained Pareto-efficiency of the student-optimal stable mechanism for school

choice problems and of the cumulative offer mechanism for many matching prob-

lems with complex constraints.3

3. Suppose a normative rule associates each profile of preferences with some Pareto-

constrained participation-maximal and individually rational allocation. Given our
three assumptions, there is at most one (in welfare terms) strategy-proof mechanism that
selects, for each profile of preferences, an allocation that each agent finds at least as de-
sirable as that prescribed by the benchmark under true preferences.4 This result tells us

that the student-optimal stable mechanism is the only strategy-proof mechanism

satisfying various normative requirements that are weaker than stability.5

The rest of the paper is organized as follows. We introduce our model in Section 2.

We define properties of allocations and mechanisms in Section 3. We state and prove our

results in Section 4. We discuss applications in Section 5. We defer detailed discussion of

related literature to Sections 4 and 5.

2 The Model

LetN be a finite set of agents. Let F be the nonempty set of allocations. Given α ∈ F ,

let N (α) ⊆N be the participants at α.6 For each i ∈N , let Fi ⊆ F be the set of allocations

that i participates at.7 If α ∈ F is chosen and i is not a participant at α, then i consumes

his outside option. We denote consumption of the outside option by ∅. For each α ∈ F ,

we denote by α(i) either α if α ∈ Fi or ∅ otherwise. Note that the set of participants,

3 See Hirata and Kasuya [2017] for another sufficient condition.
4 However, this does not hold if the benchmark rule identifies allocations that are not individually

rational or Pareto-constrained participation-maximal, as would be the case when the benchmark rule is a
constant function, identifying a single benchmark allocation independent of preferences.

5 These include “legality” [Morrill, 2016] and partial fairness [Dur et al., 2015].
6 For instance, in the assignment of indivisible objects to agents, participants are those agents who

receive an object.
7 This set is define by Fi = {α ∈ F : i ∈N (α)}.
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N (α), at each α is a part of the specification of the model. That is, the definition of α

presumes the participation of N (α). In the next section, we define individual rationality to

account for agents’ preferences in regards to participation.

For each i ∈ N , his preference is a complete, reflexive, and transitive binary relation

on Fi∪{∅}. We denote it by Ri. Since i’s preference is over Fi∪{∅} rather than F , we have

assumed that i is indifferent between any pair of allocations that he does not participate

at. Consequently, his welfare from such allocations is fully determined by his outside

option. In effect, we assume no externalities on non-participants.

For each pair α,β ∈ F , we write α(i) Ri β(i) to mean that i finds α(i) to be at least

as good as β(i). We use Pi to denote strict preference and Ii to denote indifference, the

asymmetric and symmetric components of Ri respectively. LetRi be a set of preference

relations for i. A preference domain isR ≡ ×i∈NRi .
Our analysis is for fixed N , F , and R. Thus, an economy is entirely described by

R ∈ R. A (direct) mechanism, ϕ : R → F , associates each economy with an allocation.

For each R ∈ R and each i ∈N , instead of ϕ(R)(i), we write ϕi(R).

3 Properties of Allocations and Mechanisms

Individual rationality An allocation is individually rational if each agent finds it at

least as desirable as not participating. That is, for each R ∈ R and each α ∈ F , α is

individually rational at R if, for each i ∈ N , α(i) Ri ∅.8 A mechanism, ϕ, is individually
rational if, for eachR ∈ R, ϕ(R) is individually rational atR. Individual rationality ensures

that no agent has an incentive to exercise his outside option when the allocation chosen

by the mechanism relies on his presence.

Participation-expansion An allocation participation-expands another if participation

at the latter entails participation at the former. That is, for each pair α,β ∈ F , α

participation-expands β if N (α) ⊇ N (β), and strictly so if N (α) ) N (β). If they have the

same participants, then they are participation-equivalent. That is, α is participation-

equivalent to β if N (α) = N (β). Given a pair of mechanisms ϕ and ϕ′, ϕ participation-
expands ϕ′ if, for each R ∈ R, ϕ(R) participation-expands ϕ′(R). They are participation-
equivalent if, for each R ∈ R, ϕ(R) and ϕ′(R) are participation-equivalent.

Pareto-improvement One allocation Pareto-improves another if each agent finds the

first at least as desirable as the second. That is, for each R ∈ R and each pair α,β ∈ F ,

8 Since each i <N (α) consumes ∅, it suffices to verify that for each i ∈N (α),α(i) Ri ∅.
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α Pareto-improves β at R if, for each i ∈ N , α(i) Ri β(i).9 If α Pareto-improves β at R

and there is i ∈ N such that α(i) Pi β(i), then α strictly Pareto-improves β at R. If α ∈ F
is such that no allocation strictly Pareto-improves it at R, then α is Pareto-efficient at

R. For each pair of mechanisms, ϕ and ϕ′, ϕ Pareto-improves ϕ′ if, for each R ∈ R, ϕ(R)

Pareto-improves ϕ′(R) at R. If ϕ Pareto-improves ϕ′ and for some R ∈ R, ϕ(R) strictly

Pareto-improves ϕ′(R) at R, then ϕ strictly Pareto-improves ϕ′. If, for each R ∈ R and each

i ∈ N , ϕi(R) Ii ϕ′i(R), then ϕ and ϕ′ are welfare-equivalent. If, for each R ∈ R, ϕ(R) is

Pareto-efficient at R, then ϕ is Pareto-efficient.

Pareto-constrained participation-maximality An allocation is Pareto-constrained

participation-maximal at a given R ∈ R if there is no other allocation that strictly ex-

pands the set of participants without harming anyone. That is, for each R ∈ R and each

α ∈ F , α is Pareto-constrained participation-maximal at R if there is no β ∈ F such that

(1) N (α) (N (β), so that at least one additional agent participates at β compared to α and

(2) there is no i ∈N , such that α(i) Pi β(i), so that nobody is worse off at β than at α. Equiv-

alently, an allocation is Pareto-constrained participation-maximal if there is no other al-

location that simultaneously Pareto-improves it and strictly participation-expands it.10

By definition, each allocation that is individually rational and Pareto-efficient is Pareto-

constrained participation-maximal, but the converse is not true.11 A mechanism, ϕ, is

Pareto-constrained participation-maximal if, for each R ∈ R, ϕ(R) is Pareto-constrained

participation-maximal at R.

IR-PCPM-Pareto-connectedness The Pareto-improvement relation is reflexive and

transitive but not complete. Two allocations are Pareto-comparable if one Pareto-

improves the other. Two individually rational and Pareto-constrained participation-

maximal allocations are IR-PCPM-Pareto-connected if there is a sequence of individu-

ally rational and Pareto-constrained participation-maximal allocations starting at one

and ending at the other such that successive allocations are Pareto-comparable. That

is, two individually rational and Pareto-constrained participation-maximal allocations,

α,β ∈ F , are IR-PCPM-Pareto-connected if there is a sequence (αk)
K
k=0, with α0 ≡ α and

αK ≡ β, such that for each k ∈ {1, . . . ,K}, αk is individually rational, Pareto-constrained

9 In this case, some authors say that α weakly Pareto-improves β. However, since this is the main form
of Pareto-improvement that we consider, we drop the qualifier.

10 We have chosen this terminology since an allocation satisfies this property when its set of participants
is maximal subject to the constraint of Pareto-improvement.

11 In the special case of the object allocation model with strict preferences (see Section 5.1), where non-
wastefulness is defined, non-wastefulness is stronger than Pareto-constrained participation-maximality.
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Figure 1: Suppose there is a preference relation, Ri , where i prefers α to β and finds β to
be at least desirable as his outside option. Richness of the outside option says that there
is another preference relation for i, R′i , where α is better than his outside option, which is
in turn better than β. Furthermore, any allocation that i finds at least as desirable as his
outside option under R′i , he prefers over β under Ri .

participation-maximal, and Pareto-comparable to αk−1. Each pair of individually ratio-

nal and Pareto-constrained participation-maximal mechanisms, ϕ and ϕ′, are IR-PCPM-
Pareto-connected if, for each R ∈ R, ϕ(R) and ϕ′(R) are IR-PCPM-Pareto-connected at R.

Strategy-proofness A mechanism, ϕ, is strategy-proof if no agent can benefit by mis-

reporting his preferences, no matter what other agents do. That is, for each R ∈ R, each

i ∈N , and each R′i ∈ Ri , ϕi(R) Ri ϕi(R′i ,R−i).

Strategy-proofness-constrained Pareto-efficiency A strategy-proof mechanism is

strategy-proofness-constrained Pareto-efficient if there is no strategy-proof mechanism

that strictly Pareto-improves it.

4 Strategy-proof Pareto-improvement

We present here our main result and several corollaries, which we show under varying

combinations of two further assumptions on preferences.

The first is richness of the outside option (Figure 1): for each i ∈N , each Ri ∈ Ri , and

each pair α,β ∈ Fi such that α(i) Pi β(i) Ri ∅, there is R′i ∈ Ri such that (1) α(i) P ′i ∅ P ′i
β(i), and (2) for each γ ∈ Fi , if γ(i) R′i ∅ then γ(i) Pi β(i). The second assumption is no
indifference with the outside option: for each i ∈ N and each Ri ∈ Ri , there is no α ∈ Fi
such that α(i) Ii ∅.12

12 Sönmez [1999] makes two similar assumptions, where an agent’s endowment plays the role that ∅

plays here. Also see Erdil and Ergin [2017] for an instance of no indifference with the outside option in a
matching setting with weak preferences.
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Remark 1. In many discrete private goods applications, it is typical to assume an agent’s

preference domain consists of all strict preference relations over own outcomes. This,

however, is far more than what is implied by our assumptions. No indifference with

the outside option only states that ties with ∅ are broken, but other indifferences may

exist. More importantly, richness of the outside option is a great deal weaker than the

assumption that all orderings are available. To see this, consider the fact that Ri and R′i in

the definition of richness need not preserve, entirely, the relative orderings of alternatives

other than α, β, and ∅. This makes it even weaker than the analogous assumption in

Sönmez [1999]. We discuss the necessity of these assumptions in the Online Appendix.

Our main result relates the Pareto-improvement and participation-expansion rela-

tions over strategy-proof and individually rational mechanisms. Under each of the above

assumptions, we show that one of these relations is a refinement of the other. Thus, under

both assumptions together, they are equivalent.

Theorem 1. Consider the Pareto-improvement and the participation-expansion relations re-
stricted to the set of strategy-proof and individually rational mechanisms.

(A) If the preference domain satisfies no indifference with the outside option, then Pareto-
improvement implies participation-expansion.

(B) If the preference domain satisfies richness of the outside option, then participation-
expansion implies Pareto-improvement.

Proof.

(A) Let ϕ and ϕ′ be a pair of individually rational mechanisms such that ϕ′ Pareto-

improves ϕ. Then, for each R ∈ R, and each i ∈ N , ϕ′i(R) Ri ϕi(R). By individual

rationality of ϕ and no indifference with the outside option, if i ∈ N (ϕ(R)), then

ϕi(R) Pi ∅, so ϕ′i(R) Pi ∅. Thus, i ∈ N (ϕ′(R)). Since this holds at each R for each

i ∈N (ϕ(R)), ϕ′ participation-expands ϕ.

(B) Let ϕ and ϕ′ be a pair of strategy-proof and individually rational mechanisms such

that ϕ′ participation-expands ϕ. If ϕ′ does not Pareto-improve ϕ, then there are

i ∈ N and R ∈ R such that ϕi(R) Pi ϕ′i(R). Let α ≡ ϕ(R) and β ≡ ϕ′(R). Since ϕ′

participation-expands ϕ, N (β) ⊇N (α). Since both ϕ and ϕ′ are individually rational,

α(i) Ri ∅ and β(i) Ri ∅. Since α(i) Pi β(i) Ri ∅, we deduce that i ∈ N (α). Thus, since

N (β) ⊇N (α), i ∈N (β).
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Since α(i) Pi β(i) Ri ∅, by richness of the outside option, there is R′i ∈ Ri such that

(1) α(i) P ′i ∅ P ′i β(i), and (2) for each γ ∈ Fi , if γ(i) R′i ∅ then γ(i) Pi β(i). Let γ ≡
ϕ(R′i ,R−i) and γ ′ ≡ ϕ(R′i ,R−i).

Since ϕ is strategy-proof, γ(i) R′i α(i). Otherwise, i would have an incentive to misre-

port Ri if his true preferences are R′i . Thus, by definition of R′i , γ(i) P ′i ∅. So i ∈N (γ).

Again, since ϕ′ participation-expands ϕ, i ∈ N (γ ′). Since ϕ′ is individually rational,

γ ′(i) R′i ∅. By definition of R′i , γ
′(i) Pi β(i). This contradicts the strategy-proofness

of ϕ′ since i has an incentive to misreport his preference as R′i if his true preferences

are Ri . From this contradiction, we conclude that ϕ′ does Pareto-improve ϕ.

For individually rational mechanisms, Theorem 1(A) follows from the assumption of

no indifference with the outside option and the definition of individual rationality. In

fact, it does not even require the mechanisms being compared to be strategy-proof. The

more novel and compelling aspect of Theorem 1 is Part (B). It says that for a pair of mech-

anisms that are both strategy-proof and individually rational, participation-expansion

implies Pareto-improvement even if agents may be indifferent between participating and

not participating, given richness of the outside option.

Remark 2. The proof of Theorem 1 is at the level of a single agent. Consequently, if

strategic preference reporting is restricted to only a subset S of agents, a version of the

theorem for S holds: if the preferences of agents in S satisfy richness of the outside option

and no indifference with the outside option, then among mechanisms that are strategy-

proof and individually rational for members of S, the versions of the Pareto-improvement

and participation-inclusion relations restricted to S coincide.

For the probabilistic allocation of indivisible goods when each agent has unit de-

mand and strict preferences, Erdil [2014] has shown that strict Pareto-improvement

in the stochastic dominance sense implies a strict participation-expansion. However,

we are heretofore unaware of other work showing an equivalence between the Pareto-

improvement and participation-expansion relations.

Theorem 1 provides an understanding of the Pareto-improvement relation over the set

of strategy-proof and individually rational mechanisms. The implications of this result,

some of which we consider in the remainder of this section, have many applications that

we describe in Section 5.

By selecting an allocation for each profile of preferences, a mechanism selects a list

of participants for each profile of preferences as well—those agents who participate at
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the allocation that it selects. The following corollary of Theorem 1(B) says that, under

richness of the outside option, pinning down who participates at each profile pins down

the entire mechanism in welfare terms. It does not require R to satisfy no indifference

with the outside option, and so is relevant for economies with continuous preferences, as

in the case where continuous transfers are possible.

Corollary 1. (Participation-equivalence) Let the preference domain satisfy richness of
the outside option. If a pair of strategy-proof and individually rational mechanisms are
participation-equivalent, then they are welfare-equivalent.

Under the assumption of no indifference with the outside option, the set of individu-

ally rational and Pareto-constrained participation-maximal allocations has a particularly

nice structure. The IR-PCPM-Pareto-connectedness relation over this set is reflexive, sym-

metric, and transitive, so it is an equivalence relation. Therefore, it partitions this set into

components that are IR-PCPM-Pareto-connected. The following lemma says that every

allocation in the same component involves the same participants. Since the statement of

the lemma is specific to a fixed profile of preferences, it does not rely on richness of the

outside option.13

Lemma 1 (Structure Lemma). Let the preference domain satisfy no indifference with the
outside option. For each profile of preferences, if a pair of individually rational and Pareto-
constrained participation-maximal allocations are IR-PCPM-Pareto-connected, then they are
also participation-equivalent.

Proof. Let R ∈ R and α ∈ F such that α is individually rational and Pareto-constrained

participation-maximal at R. We first show for each β ∈ F , if β Pareto-improves α at R,

then N (α) = N (β) and β is individually rational and Pareto-constrained participation-

maximal at R as well. Then we show for each β ∈ F , if β is individually rational, Pareto-

constrained participation-maximal, and IR-PCPM-Pareto-connected to α, then α and β

are participation-equivalent.

For each i ∈ N (α), by no indifference with the outside option, α(i) Pi ∅. Since β(i) Ri
α(i), β(i) Pi ∅, and so i ∈ N (β), and β is individually rational at R. Thus, N (α) ⊆ N (β).

Since β Pareto-improves α, Pareto-constrained participation-maximality of α implies it is

not the case that N (β) )N (α). Then together with N (α) ⊆N (β), we have N (β) =N (α).

Let γ ∈ F . If γ Pareto-improves β, then it Pareto-improves α. Since α is Pareto-

constrained participation-maximal, it is not the case that N (γ) ) N (α). However,

13 In Alva and Manjunath [2017], we draw stronger conclusions by adding structure to the model. Indeed,
the Structure Lemma is closely related to the Rural Hospitals Theorem in two-sided matching [Roth, 1986].
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N (α) = N (β), so it is not the case that N (γ) ) N (β). Since this holds for any γ that

Pareto-improves β, β is Pareto-constrained participation-maximal at R.

Now, suppose β is individually rational, Pareto-constrained participation-maximal,

and α and β are IR-PCPM-Pareto-connected. Then, there is a sequence of individually

rational and Pareto-constrained participation-maximal allocations,
(
αk

)K
k=0

, with α0 = α

and αK = β, such that for each k ∈ {1, . . . ,K}, either αk Pareto-improves αk−1 or vice versa.

In either case, by the argument above, N (αk) =N (αk−1), and so N (α) =N (β).

A consequence of Corollary 1 and the Structure Lemma is that no two welfare-distinct

strategy-proof mechanisms select from the same component of the partition of the indi-

vidually rational and Pareto-constrained participation-maximal allocations that we have

described above at every preference profile.

Proposition 1. Let the preference domain satisfy richness of the outside option and no indif-
ference with the outside option. If a pair of strategy-proof, individually rational, and Pareto-
constrained participation-maximal mechanisms are IR-PCPM-Pareto-connected, then they are
welfare-equivalent.

Proof. Let ϕ and ϕ′ be a pair of strategy-proof, individually rational, and Pareto-

constrained participation-maximal mechanisms. If they are IR-PCPM-Pareto-connected,

then by the Structure Lemma, they are participation-equivalent. Thus, by the Corollary 1,

they are welfare-equivalent.

Previous work on describing the Pareto frontier of strategy-proof mechanisms in-

cludes Anno and Kurino [2016] on object allocation with multi-unit demand and no

transfers, Ohseto [2006] and Sprumont [2013] on object allocation with unit demand and

transfers, and Anno and Sasaki [2013] on divisible goods allocation. Proposition 1 con-

tributes by providing a useful sufficient condition for a mechanism to be on this frontier.

Corollary 2. Let the preference domain satisfy richness of the outside option and no indiffer-
ence with the outside option. A strategy-proof and individually rational mechanism is strategy-
proofness-constrained Pareto-efficient if it is Pareto-constrained participation-maximal.14

A natural context where one might consider IR-PCPM-Pareto-connected mechanisms

is when there is a normative benchmark rule that identifies a particular individually ra-

tional and Pareto-constrained participation-maximal allocation for every profile of pref-

erences. If a designer is tasked with choosing a strategy-proof mechanism that Pareto-

14 However, Pareto-constrained participation-maximality is not a necessary condition. See the Online
Appendix for a counterexample.
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improves on such a benchmark rule under agents’ true preferences, Proposition 1 says

that his problem has at most one solution.

Corollary 3. Let the preference domain satisfy richness of the outside option and no indif-
ference with the outside option. Consider an individually rational and Pareto-constrained
participation-maximal benchmark rule. In welfare terms, there is at most one strategy-proof
mechanism that Pareto-improves it under true preferences.

The limitation of the above corollary is that it requires the benchmark to be indi-

vidually rational and Pareto-constrained participation-maximal. Without these quali-

fications, the conclusion does not hold. Suppose, as is the case in many applications,

it is possible to assign every agent his outside option. Then every individually ratio-

nal mechanism Pareto-improves the benchmark that always assigns the outside option

to every agent. Of course, there may be many strategy-proof and individually rational

mechanisms. Yet, this does not contradict Corollary 3 since this benchmark is not Pareto-

constrained participation-maximal.

5 Applications

We consider several applications of our results: the object allocation model, aug-

mented with choice correspondences (Section 5.1); school choice (Section 5.2); excludable

public goods (Section 5.3); and transferable utility (Section 5.4).

5.1 Object Allocation and Matching

We start by explaining how the object allocation model fits into the general model that

we defined in Section 2.

The object allocation model Let O be a finite and nonempty set of objects, T be a

nonempty set of terms under which an agent may be assigned an object, andX ⊆N ×O×T
be a nonempty set of possible triples. The triple (i,o, t) ∈N ×O×T represents “i consumes

o under the terms t.” These are contracts in Hatfield and Milgrom [2005]. For each x ∈ X,

let N (x) be the agent associated with x. For each Y ⊆ X, let N (Y ) be the set of agents

associated with triples in Y . For each i ∈ N , let Y (i) be the triples in Y associated with

i. For each o ∈ O, let Y (o) be the triples in Y associated with o. Each object may only

be allocated in certain ways. These constraints define, for each o ∈ O, the feasible sets
for o, which is a collection of subsets of X(o). We denote it by Fo. In an allocation, each
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agent has one triple from X(i) or consumes his outside option, ∅. One only cares about

one’s own triple, so i has a preference relation over X(i)∪ {∅}. We also assume that this

preference is strict—that is, a linear order over X(i)∪{∅}—as is typical in the much of this

literature.15

This object allocation model can be embedded into our general model as follows. An

allocation is a subset µ of X such that no two triples name the same agent and each object’s

assignment is a feasible set for it. If µ(i) is empty for agent i, he consumes his outside

option, ∅. That is, F is a subset of 2X such that for each µ ∈ F , each i ∈N , and each o ∈O,

|µ(i)| ≤ 1 and µ(o) ∈ Fo. Thus, the participants at µ, N (µ), are the agents associated with

some triple in µ. Each agent’s preference relation in the object allocation model defines a

preference relation over F .

Since preferences are strict, let P ≡ ×i∈NPi , where Pi⊆ Ri is the set of preferences of

i over Fi that correspond to the strict preferences over X(i)∪ {∅}. For each Ri ∈ Pi , Ii is

trivial and Pi completely identifies Ri . So we refer to Pi ∈ Pi . Notice that P necessarily

satisfies no indifference with the outside option. The richness assumption is much weaker

than requiring Pi to contain all strict preferences, which is a standard assumption in such

contexts.

When T is a singleton, each x ∈ X is fully identified by the associated agent and object.

In such cases, for each i ∈N , each triple in X(i) is identified by an element of O, while for

each o ∈O, each triple in X(o) is identified by an element ofN . Also, each object’s feasible

set is identified by a collection of subsets of N , while each agent’s preference relation is

identified by an ordering of O∪ {∅}.
As an example, consider the classical object allocation model, where each o ∈ O is an

object with capacity qo ∈ Z+. In this model, there is only one term under which an agent

can be assigned to an object. For each o ∈ O, Fo consists of all subsets of X(o) containing

no more than qo elements. In such cases, where for each o ∈O, there is qo ∈ R+ such that,

for each Y ⊆ X(o), Y ∈ Fo if and only if |Y | ≤ qo, we say that Fo is capacity-based.

This model accommodates economies with cross-object constraints: F can be any sub-

set of 2X so long as each allocation contains at most one triple associated with each agent.

In the absence of such cross-object constraints, the only constraints are that the triples

chosen for each object are feasible. That is, for each µ ⊆ X, µ ∈ F if and only if (1) for each

i ∈N , |µ(i)| ≤ 1, and (2) for each o ∈O, µ(o) ∈ Fo. In such cases, we say that F is Cartesian.

If, in addition to F being Cartesian, for each o ∈O, Fo is capacity-based, then we say that

F is capacity-based. Since we do not require F to be Cartesian, our results are applicable

even with distributional constraints [Kamada and Kojima, 2015, Goto et al., 2017].

15 See Bogomolnaia et al. [2005] and Erdil and Ergin [2017] for difficulties that arise with indifferences.
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Non-wastefulness For the classical object allocation model, where feasibility is

capacity-based, a natural requirement is that an agent ought not to prefer an object that

has remaining capacity to his assignment. If he were to, we could allow him to consume

this available resource at no expense to the other agents.

We define non-wastefulness for our general object allocation model as follows: Given

P ∈ P , µ ∈ F is wasteful at P if there are o ∈O, i ∈N , and ν ∈ F , such that (1) |ν(o)| > |µ(o)|,
so that ν allocates o to more agents than µ does, (2) ν(i) Pi µ(i), so that i prefers his

assignment at ν to that at µ, and (3) for each j ∈ N \ {i}, ν(j) Ri µ(j), so that no agent is

worse off at ν compared to µ. If it is not wasteful at P , then µ is non-wasteful at P . A

mechanism, ϕ, is non-wasteful if, for each P ∈ P , ϕ(P ) is non-wasteful at P .

Remark 3. If an allocation is non-wasteful, then it is Pareto-constrained participation-
maximal. The converse is not true, even for the classical object allocation model.16

For the classical object allocation model, Balinski and Sönmez [1999] define non-

wastefulness as follows: µ ∈ F is non-wasteful at P ∈ P if there is no o ∈ O such that

|µ(o)| < qo and i ∈ N such that o Pi µ(i). For this narrower setting, our definition of non-

wastefulness is equivalent.17,18

Choice In many applications, there is more information available about each object

than just the feasible sets. These might be priorities over agents as in school choice, ob-

jectives of the army in cadet-branching, and so on. We model the extra information about

how feasible sets are prioritized by associating each o ∈O with a choice correspondence,

Co : 2X(o) ⇒ 2X(o), such that (1) for each Y ⊆ X(o),Co(Y ) ⊆ 2Y , and (2) the range of (Co)

is mcFo.19 Condition (1) says that from any set, Co picks only subsets of it. Condition

(2) says that the feasible sets are exactly those that are chosen from some set. To satisfy

Condition (2), it would suffice, for instance, to select each feasible set from itself.20 Let

C ≡ (Co)o∈O.

We associate each object with a choice correspondence rather than a choice function,

since applications like school choice with weak priorities [Erdil and Ergin, 2008, Ab-

dulkadiroğlu et al., 2009] are better modeled with choice correspondences.21

16 See the Online Appendix for a proof.
17 See the Online Appendix for a proof.
18 For capacity-based F and singleton T , Ehlers and Klaus [2014] define an even weaker property that

they call weak non-wastefulness. However, even in that specific setting, a result like the Structure Lemma
does not hold for such a weak version of non-wastefulness.

19 The range of Co : 2X(o)⇒ 2X(o) is
⋃
Y⊆X(o)Co(Y ).

20 An alternative approach is to start with Co as the primitive and define Fo to be its range.
21 To our knowledge, the first and only other analysis of matching to consider general choice correspon-

dences as a primitive is by Erdil and Kumano [2014].
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Stability An allocation is stable if no set of agents prefers to drop their assignments in

favor of being assigned to a new object under some terms that the object would “choose.”

That is, for each µ ∈ F and P ∈ P , µ is stable at P if it is individually rational22 at P

and there are no o ∈ O and Y ⊆ X(o) \ µ(o) such that (1) for each i ∈ N, |Y (i)| ≤ 1, (2) for

each y ∈ Y ,y PN (y) µ(N (y)), (3) µ(o) < Co(µ(o)∪ Y ), (4) there is Z ∈ Co(µ(o)∪ Y ) such that

Y ⊆ Z, and (5) (µ \ (µ(o)∪ µ(N (Y ))))∪Z ∈ F . Condition (1) says that Y contains at most

one triple per agent. Condition (2) says that every agent associated with a triple in Y

finds it preferable to his triple in µ. These are familiar conditions from the definition

of stability for choice functions. Since we are concerned with choice correspondences,

the next part of the definition needs to be broken into two parts. The first, Condition

(3), says that µ(o) is not among what is chosen by o when Y is available. The second,

Condition (4), says that there is some chosen set, Z, that contains Y . That is, Condition

(3) and Condition (4) together say that Y is contained in some Z that is revealed by Co to

have a higher priority than µ(o). The standard definition of stability typically does not

include Condition (3) since it is implied by Condition (4) when choice correspondences

are single-valued. Condition (5) is only relevant if F is not Cartesian. It requires that

replacing the assignments of o and N (Y ) at µ with Z is feasible. A mechanism, ϕ, is stable
if, for each P ∈ P , ϕ(P ) is stable at P .23

Given a profile of preferences P , if a stable allocation µ Pareto-improves every other

stable allocation at P , then it is the agent-optimal stable allocation at P . If a stable

allocation µ is Pareto-improved by every other stable allocation at P , then it is the agent-
pessimal stable allocation at P . If C is such that an agent-optimal stable allocation exists

for each profile of preferences, then we denote by ϕAOS the mechanism that selects this

allocation. Similarly, let ϕAP S select the agent-pessimal stable allocation at each profile

of preferences.

Stability is relevant if the choice correspondences represent more than feasibility con-

straints: they may represent the rights of agents with regards to the objects or particular

design goals of the policy maker. The constraints imposed by this information may keep

a normative benchmark rule below the Pareto frontier. Stability is a natural requirement

for such a benchmark that the mechanism designer may need to Pareto-improve under

true preferences. The designer’s choice of mechanism might then be constrained to those

that select, at every preference profile, an allocation that Pareto-improves some stable

allocation. Such a mechanism is stable-dominating.24 Since we do not insist on strict

22 Individual rationality accounts for agents’ preferences while feasibility, along with the requirement
that, for each o ∈O, Fo be the range of Co, accounts for objects’ choice correspondences.

23 This definition is equivalent to the standard one if, for each o ∈O, Co is single-valued.
24 We define this property for allocations as well: µ ∈ F is stable-dominating if there is ν ∈ F such that ν
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Pareto-improvement, every stable mechanism is stable-dominating.

Results Since Corollary 3 only applies to Pareto-constrained participation-maximal

benchmarks, we need stability to imply Pareto-constrained participation-maximality to

invoke it here. In many applications, like school choice, where priority rankings define

the choice correspondences, it is easy to see that stability implies non-wastefulness, and

so, by Remark 3, Pareto-constrained participation-maximality. However, this may not

be the case without any restrictions on choice correspondences, even if they are single-

valued.25

We place two restrictions on choice correspondences to address this. The first says

that the choices from each set should be at least as large as each choice from each of

its subsets. That is, C is size monotonic if, for each o ∈ O, each Y ⊆ X(o), each finite

Y ′ ⊆ Y , each Z ∈ Co(Y ), and each Z ′ ∈ Co(Y ′), |Z | ≥ |Z ′ |.26,27 The second restriction is a

mild consistency requirement. It says that if a set is among those chosen from a larger

set, it ought to be among what is chosen from itself. That is, C is idempotent if, for each

o ∈ O, and each Y ∈ range(Co), Y ∈ Co(Y ).28 Unlike most of the literature on matching

with contracts, we do not assume that choice correspondences satisfy a condition like

irrelevance of rejected contracts (IRC) [Aygün and Sönmez, 2013].29

The assumptions that preferences are strict and that choice correspondences are size

monotonic and idempotent ensure that every stable allocation is non-wasteful. The non-

triviality of the proof, in the Appendix, is because we have not assumed IRC.

Lemma 2. Let C be size monotonic and idempotent. For each profile of preferences, if an
allocation is stable, then it is non-wasteful.

Lemma 2 allows us to link our results to the literature on stable mechanisms. In

particular, we have the following corollary of Theorem 1, Lemma 2, and Remark 3.

Corollary 4. Let C be size monotonic and idempotent. For each stable-dominating bench-
mark rule, there is at most one strategy-proof mechanism that Pareto-improves it under true
preferences.

is stable and µ Pareto-improves ν.
25 See the Online Appendix for an example.
26 This is an extension to correspondences of a condition defined for choice functions [Alkan, 2002, Alkan

and Gale, 2003, Fleiner, 2003, Hatfield and Milgrom, 2005].
27 For finite Y , setting Y ′ = Y , size monotonicity implies that for each pair Z,Z ′ ∈ Co(Y ), |Z | = |Z ′ |.
28 This rules out, for instance, Co such that Co({x,y,z}) = {{x,y}} but Co({x,y}) = {{x}}.
29 Aygün and Sönmez [2013] define IRC for choice functions. Alva [2018] extends the definition of IRC

to choice correspondences and shows its equivalence to the weak axiom of revealed preference.
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Discussion An immediate implication of Corollary 4 is that every strategy-proof and

stable-dominating mechanism is strategy-proofness-constrained Pareto-efficient. Hirata

and Kasuya [2017] define a version of non-wastefulness weaker than ours, but is logi-

cally independent from Pareto-constrained participation-maximality. They show that for

matching with contracts models with single-valued choice functions satisfying IRC, every

non-wasteful and strategy-proof mechanism is strategy-proofness-constrained Pareto-

efficient. They also show that for such choice functions, there is at most one stable and

strategy-proof mechanism. Under our choice assumptions, there may be more than one

such mechanism.30

Kamada and Kojima [2015], in a model with distributional constraints, define a

strategy-proof mechanism that Pareto-improves on a deferred acceptance mechanism.

This does not contradict Corollary 4, which takes F as fixed. By making flexible the con-

straints that define F , they obtain a strategy-proof Pareto-improvement on a benchmark

that is no longer Pareto-constrained participation-maximal under the redefined F .31 In a

similar setting with more general constraints, Goto et al. [2017] show that an adaptation

of the deferred acceptance mechanism is strategy-proofness-constrained Pareto-efficient.

A simple yet policy-relevant measure of a mechanism’s performance is the expected
match rate: the expected number, with respect to a prior distribution over preference

profiles, of agents to whom the mechanism assigns an object. Theorem 1 implies that

comparisons of strategy-proof mechanisms by Pareto-improvement translate to compar-

isons of expected match rates. An interesting application concerns the proposal of Ka-

mada and Kojima [2015] to address doctor shortages in rural areas [Roth, 1986]. Their

strategy-proof mechanism assigns more doctors to rural areas if only caps on the number

of doctors assigned to non-rural regions are tightened. However, this tightening leads

to a Pareto-worse outcome from the doctors’ point of view. Thus, Theorem 1 provides a

cautionary message: an expected increase of one doctor matched to a rural region leads

to an expected decrease of more than one doctor matched to other regions.32

Many of the mechanisms that solve market design problems are based on the cumula-

tive offer algorithm [Hatfield and Milgrom, 2005]. Under size-monotonic and idempotent

30 See the Online Appendix for an example.
31 In particular, the benchmark rule in their study is the deferred acceptance mechanism where objects

have target capacities that satisfy distributional constraints. Taking these targets as given, this benchmark
has no strategy-proof Pareto-improvement. However, by allowing a mechanism the flexibility to exceed
these targets while satisfying the distributional constraints, which changes the set of feasible allocations F ,
Kamada and Kojima [2015] obtain a strategy-proof Pareto-improvement.

32 The conclusion that the decrease is greater than one holds if the prior distribution over preference
profiles has full support.
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choice functions,33 these mechanisms are strategy-proofness-constrained Pareto-efficient,

by Corollary 4. However, these choice conditions are not necessary. To apply Corollar-

ies 2 or 3, one only needs to ensure non-wastefulness or Pareto-constrained participation-

maximality. Typically, it is easy to show that these mechanisms are non-wasteful even

without size-monotonicity.34 Thus, they are also strategy-proofness-constrained Pareto-

efficient.

5.2 School Choice

We consider here the more specialized school choice model, which is the classical object

allocation model augmented with weak priorities. In this model, T is a singleton and F
is capacity-based. Additionally, each o ∈ O is associated with a priority over N denoted

by %o, which is a complete, transitive, and reflexive binary relation. Let % ≡ (%o)o∈O.

Given priorities, %, for each o ∈O, we define C%o as follows. For each Y ⊆N ,

C%o (Y ) ≡

 {Y } if |Y | ≤ qo,
{Z ⊆ Y : |Z | = qo and for each i ∈ Z and each j ∈ Y \Z,i %o j} otherwise.

That is, for each subset of agents, if it contains no more than qo elements, then the entire

set is the only one that is chosen. If not, then all subsets that contain exactly qo ele-

ments are chosen, except for ones that include agents with strictly lower priority than an

excluded agent. This C%o is size monotonic and idempotent.

Suppose that an agent prefers a particular object o to the one that he is assigned. Under

the interpretation of priorities as consumption “rights,” if o is assigned to someone else

who has strictly lower priority, then i has the right to protest this allocation. For each

µ ∈ F , µ respects priorities if no agent can protest on such grounds. That is, there is no

pair i, j ∈N and o ∈O such that o Pj µ(j), µ(i) = o, and j �o i.

Stability and dominating stable allocations as fairness Interpreting respect for the

priorities as a fairness constraint [Balinski and Sönmez, 1999, Abdulkadiroğlu and

Sönmez, 2003], we are interested in mechanisms that are individually rational, non-

wasteful, and fair. Respect for priorities alongside individual rationality and non-

wastefulness is equivalent to stability with respect the choice correspondence for each

object defined from these priorities.

33 See, for instance, the problems of cadet-branch matching [Sönmez and Switzer, 2013, Sönmez, 2013]
and controlled school choice [Hafalir et al., 2013, Ehlers et al., 2014].

34 These include problems with slot-specific priorities [Kominers and Sönmez, 2016] or hidden substi-
tutes [Hatfield and Kominers, 2014].
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Remark 4. For each profile of preferences, an allocation is stable with respect to C% if and only
if it is individually rational, non-wasteful, and respects %.35

Since the combination of individual rationality, non-wastefulness, and respect for pri-

orities is equivalent to stability, we speak of an allocation being stable rather than it re-

specting priorities and being individually rational and non-wasteful.

When priorities are strict, ϕAOS is well defined [Gale and Shapley, 1962]. However,

when priorities contain ties, there may not exist a single stable allocation that Pareto-

improves every other stable allocation. Since ϕAOS may not be well defined, a common

approach to handling weak priorities is to use tie breakers to form strict priorities. Let

τ ≡ (τo)o∈O be a profile of linear orders over N , one for each object. For each such τ , let

%τ be the priorities tie broken by τ. That is, for each distinct pair i, j ∈ N , i �τo j if either

(1) i �o j or (2) i ∼o j and i τo j. Let T be the set of all profiles of tie breakers. Since the

agent-optimal stable mechanism for strict priorities is well defined, given % and τ ∈ T ,

we define the agent-optimal stable mechanism for the priorities tie broken by τ as ϕAOSτ .

These are the mechanisms studied by Abdulkadiroğlu et al. [2009].36

For strict priorities, unless they satisfy a restrictive acyclicity condition, ϕAOS is not

Pareto-efficient [Ergin, 2002]. So when priorities are weak, arbitrarily breaking ties could

cause Pareto-inefficiency. In fact, for any τ ∈ T , ϕAOSτ may select an allocation that is

Pareto-improvable by another stable allocation [Erdil and Ergin, 2008]. Furthermore,

some priorities permit a stable, (group) strategy-proof, and Pareto-efficient mechanism,

even while ϕAOSτ is Pareto-inefficient for every τ ∈ T [Ehlers and Erdil, 2010].

Since ϕAOSτ may not be Pareto-efficient, Abdulkadiroğlu et al. [2009] consider the

following question: for each τ ∈ T , is it possible to find a strategy-proof mechanism that

Pareto-improves ϕAOSτ? They show that the answer is negative.37 However, even if the

answer were positive, the allocations chosen by the Pareto-improving mechanism would

not be stable. The reason such a mechanism would pass muster here is that it Pareto-

improves a stable mechanism: ϕAOSτ . But as we have explained above, there is nothing

special about ϕAOSτ , other than strategy-proofness, when priorities are weak. In fact,

they may even select allocations that are Pareto-improved by other stable allocations.

In Alva and Manjunath [2017], we suggest the choice of a mechanism can be justified

on the grounds that it Pareto-improves some stable allocation at each profile of prefer-

ences. If an agent were to protest the violation of his priority at some object, we offer a

35 See the Online Appendix for a proof.
36 These ϕAOSτs correspond to what Abdulkadiroğlu et al. [2009] call deferred acceptance with multiple

tie-breaking.
37 Kesten and Kurino [2015] shows the same result even without outside options.
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move to the Pareto-improved stable allocation so this protest would be moot: the agent

would not better off at this stable allocation.38 That is, by requiring the chosen mech-

anism to just be stable-dominating, rather than stable, we may enlarge the options for a

strategy-proof Pareto-improvement.

For strict priorities, since ϕAP S is well defined [Gale and Shapley, 1962], Corollary 4

implies the following, which is stronger than the known result thatϕAOS is the only stable

and strategy-proof mechanism [Alcalde and Barberà, 1994].

Corollary 5. If % consists of strict priorities, then ϕAOS is the unique stable-dominating and
strategy-proof mechanism.

On the other hand, for weak priorities, there may be more than one stable-dominating

and strategy-proof mechanism. Nevertheless, Proposition 1 yields the following corol-

lary.

Corollary 6. Each stable-dominating and strategy-proof mechanism (including, for each
τ ∈ T , ϕAOSτ) is strategy-proofness-constrained Pareto-efficient. Furthermore, no two stable-
dominating and strategy-proof mechanisms are IR-PCPM-Pareto-connected.

While, for each τ ∈ T , ϕAOSτ is strategy-proofness-constrained Pareto-efficient,

ϕAOSτs are not the only stable and strategy-proof mechanisms [Ehlers and Erdil, 2010].

Corollary 6 extends the result of Abdulkadiroğlu et al. [2009] to all of these.

Beyond stability as fairness While we have focused on stability and stable-domination

as notions of fairness, our results allow us to draw conclusions about other fairness con-

cepts as well. Take for instance the legal set of allocations under strict priorities [Morrill,

2016], where only harmful and redressable priority violations are ruled out.39 The legal set

includes the stable set and always has a Pareto-worst member that is non-wasteful. Con-

sequently, Proposition 1 implies that ϕAOS is the unique strategy-proof selection from

the legal set.

Corollary 7. If % consists solely of strict priorities, then ϕAOS is the unique strategy-proof
mechanism selecting from the legal set.

38 See Dur et al. [2015] for recent work on algorithms that select from the stable-dominating set in a way
that only certain priorities are violated.

39 We refer the reader to Morrill [2016] for a formal definition.
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5.3 Excludable Public Goods

In this section, we illustrate how to accommodate excludable public goods in our

model. We focus on a simple setting for expositional clarity, since our purpose is to high-

light how to apply our results to obtain novel insights. A thorough analysis of the efficient

frontier of strategy-proof mechanisms for a general excludable public goods model could

use the full power of our results, but would take us too far afield.

The following model is similar to that of Jackson and Nicolò [2004] and Cantala

[2004]. Suppose a public facility is to be located on the interval (0,1) and a set of users

chosen. The set of agents is partitioned into two sets: agents in NL live at 0 and agents

in NR live at 1. Each i ∈ N prefers to have the facility located as close to his own home

as possible. Furthermore, he is unwilling to travel beyond a certain threshold ti ∈ (0,1).

That is, if i lives at 0, then he is unwilling to travel to the right of ti and if he lives at 1,

then he is unwilling to travel to the left of ti . Since we know exactly how each agent ranks

the locations, the only private information for i is ti . So a preference profile is identified

by the threshold profile t. We assume that each i ∈ N prefers to travel to ti and enjoy the

facility over opting out. However, he prefers to opt out rather than travel beyond ti . Thus,

no indifference with the outside option is satisfied. Since ti ∈ (0,1), there is always some

positive distance he is willing to travel. Yet, richness of the outside option is satisfied

since ti may be arbitrarily close to i’s home (0 if i ∈NL or 1 if i ∈NR).

An allocation consists of two parts: the location of a public facility in the interval (0,1)

and the set of users. That is, F ≡ [0,1] × 2N . A mechanism maps threshold profiles to

allocations. It is dictatorial if it ignores the thresholds and always locates the facility at 0

or always locates the facility at 1.

Even in this stark model, if we insist on strategy-proofness, individually rationality,

and Pareto-efficiency, then the only two options are the dictatorial mechanisms.40 Thus,

the requirement of Pareto-efficiency alongside strategy-proofness and individual ratio-

nality precludes the possibility that any compromise is ever reached.

Are there attractive mechanisms that compromise if we give up Pareto-efficiency?

Consider the following family of mechanisms that select a compromise location at some

threshold profiles. A one-sided unanimous compromise mechanism is defined by a compro-

mise x ∈ (0,1) and a side J ∈ {L,R}. If agents in J unanimously find x acceptable, then the

mechanism selects the location x. Otherwise, it selects the home location of the other side,

denoted K . The set of users is the set of agents willing to travel to the chosen location.

Each one-sided unanimous compromise mechanism is individually rational by defi-

40 See the Online Appendix for a proof.
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nition. It is also strategy-proof: only threshold reports of J are used to determine the

location, and it is clear that misreports can only hurt an agent in J , independently of oth-

ers’ reports. However, it is not Pareto-efficient: if every agent in K finds compromise x

unacceptable yet every agent in J finds it acceptable, then x is chosen by the mechanism

even though the home location of agents in J is a Pareto-improvement.

When the chosen location is x, every agent in NJ participates. An agent in NK who

does not participate would do so only if the location were moved some distance towards

his home location. But this would make every member of NJ worse off. On the other

hand, if the chosen location is the home location of K , then any other location would

make members of NK worse off. Therefore, every one-sided compromise mechanism is

Pareto-constrained participation-maximal. So, by Corollary 3, it is on the Pareto-frontier

of strategy-proof mechanisms.

Corollary 8. Each one-sided unanimous compromise mechanism is strategy-proofness-
constrained Pareto-efficient.

5.4 Transferable Utility

Here we consider the problem of making a social decision and assigning payments to

agents when preferences are quasilinear in payments. Consequently, there is indifference

with the outside option. Nonetheless, Corollary 1 applies if richness of the outside option

is satisfied. Below we study its implications.

SupposeD is a set of social decisions. At each δ ∈ D, the agents participating in δ are

N (δ). Let T ⊆R
N be the set of possible payment profiles. At each τ ∈ T , for each i ∈N ,

τi is the payment that i makes. Like Fi , letDi be the set of decisions that i participates at.

To fit this into our general model, an allocation in F is a pair (δ,τ) ∈ D × T . Further-

more, N (δ,τ) = N (δ). Since a non-participant consumes his outside option, we require

that for each i <N (δ), τi = 0. That is, no transfers are made to or from non-participants.

We assume that each agent’s preferences are quasilinear in the payment that he makes.

Thus, for each i ∈ N , each Ri ∈ Ri is identified by a valuation, vi ∈ R
Di∪{∅}. Let i’s

valuation space, Vi, be the set of all possible valuations for i. Thus, i’s preference relation

is represented by vi(δ)− τi , where vi(δ) is the δth coordinate of vi if i ∈ N (δ) and the ∅th

coordinate otherwise. The set of all valuation profiles is V ≡ ×i∈NVi . For each v ∈ V ,

i ∈N , and δ ∈ D, denote by uvi (δ) the net value of δ to i, relative to being excluded. That

is, uvi (δ) ≡ vi(δ)−vi(∅). Interpreting vi(∅) as i’s opportunity cost of participating, uvi (δ) is

i’s valuation of δ net of this cost. Of course, if i <N (δ), then uvi (δ) = 0.

The richness of the outside option condition that we described in Section 2 was for
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preference relations over Fi ∪ {∅}. It would be met if, for instance, Vi were such that for

each vi ∈ Vi there were v′i ∈ Vi , such that the valuations of each of the decisions were

unchanged, but the valuation of the outside option were increased. That is, for each

κ > vi(∅), there is v′i such that v′i(∅) = κ and for each δ ∈ Di , v′i(δ) = vi(δ).41

A mechanism in this setting consists of two parts: a decision rule, d : V → D, and a

payment rule, t : V → T . If (d, t) is strategy-proof, we say that t implements d. If there is

a payment rule that implements d, then d is implementable. As defined, implementation

says nothing about individual rationality. We define parallel concepts with this require-

ment added: t IR-implements d if (d, t) is not only strategy-proof but also individually

rational. In this case, we say that d is IR-implementable. If there is a unique payment

rule that IR-implements d, we say that d is uniquely IR-implementable.

An efficient decision rule maximizes the net value of the decision to its participants.

That is, a decision rule d is efficient if, for each v ∈ V ,

d(v) ∈ argmax
δ∈D

∑
i∈N

uvi (δ).

An efficient mechanism is one that has an efficient decision rule. In a context where the

status quo is that each agent enjoys his outside option, an efficient decision maximizes

the total surplus over the status quo.

With these concepts in hand, we obtain the following counterpart to Corollary 1:

Corollary 9. Every IR-implementable decision rule is uniquely IR-implementable.

In fact we can say more than Corollary 9. For any pair of decision rules d and d′ that

are participation-equivalent, if t IR-implements d and t′ IR-implements d′, then (d, t) and

(d′, t′) are welfare-equivalent.

This leads to a characterization of pivotal mechanisms: efficient mechanisms with

pivotal payment rules. A pivotal payment rule assigns to each agent a payment equal to

the externality that his participation imposes on others: t is a pivotal payment rule if, for

each v ∈ V and each i ∈N ,

ti(v) ≡ max
δ∈D\Di


∑
j,i

uvj (δ)

−
∑
j,i

uvj (d(v)).

A pivotal payment rule is a particular Groves scheme [Groves, 1973] and pivotal

41 We could state this with a bound on κ if there were a bound on valuations of the decisions in Di and
on the payments that i may make in T .
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mechanisms are well understood to be strategy-proof [Vickrey, 1961, Clarke, 1971].

Moreover, for each v ∈ V and each i ∈ N , if i < N (d(v)), then t prescribes a zero pay-

ment for i. Therefore, (d, t) is feasible. Finally, the efficiency of d ensures that (d, t) is also

individually rational. Thus, from Corollary 9 we have:

Corollary 10. A mechanism (d, t) is efficient, strategy-proof, and individually rational if and
only if it is a pivotal mechanism. That is, t IR-implements efficient d if and only if it is the
pivotal payment rule.

When we have neither the restriction that non-participants receive zero payments nor

the requirement of individual rationality, Groves schemes are the only ones to implement

efficient decision rules [Green and Laffont, 1977, Holmström, 1979]. For private goods

economies, pivotal rules are the only Groves schemes that are individually rational with-

out making payments to non-participants [Chew and Serizawa, 2007]. For pure public

goods, the counterpart of individual rationality requires that agents have no incentive

to free-ride. Substituting this property for individual rationality similarly characterizes

pivotal rules [Moulin, 1986]. Corollary 10 neither implies nor is implied by existing char-

acterizations of the pivotal mechanism since our assumption that V satisfy richness of the

outside option is logically independent from the domain assumptions made in existing

results.

Appendix: Proof of Lemma 2

Before showing that stability implies non-wastefulness under the assumptions of size

monotonicity and idempotence, we start with a definition and a lemma. For each P ∈ P ,

each µ ∈ F , and each o ∈ O, let Y
µ
o (P ) be the triples in X(o) that are associated with

an agent who prefers it to what he is assigned at µ. That is, Y
µ
o (P ) ≡ {x ∈ X(o) : x PN (x)

µ(N (x))}.

Lemma 3. Let C be size monotonic and idempotent. For each P ∈ P , each stable µ ∈ F , each
o ∈O, each finite Y ⊆ Y µo (P ), and each Z ∈ Co(µ(o)∪Y ), |Z | = |µ(o)|.

Proof. We proceed by induction over subsets of Y
µ
o (P ). Let Y ⊆ Y µo (P ).

For the base case, where Y = ∅, since µ(o) ∈ range(Co), by idempotence of C, µ(o) ∈
C0(µ(o)∪Y ) and by size monotonicity of C, for each Z ∈ Co(µ(o)), |Z | = |µ(o)|.

As an induction hypothesis, assume that for each Y ′ ( Y and each Z ∈ Co(µ(o)∪ Y ′),
|Z | = |µ(o)|. Equivalently, for each T ⊆ µ(o)∪Y such that Y * T , for each Z ∈ Co(µ(o)∪ T ),

|Z | = |µ(o)|.
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The induction step is to show that, for each Z ∈ Co(µ(o) ∪ Y ), |Z | = |µ(o)|. Let

Z ∈ Co(µ(o) ∪ Y ). By idempotence of C, Z ∈ Co(Z). Thus, since Z ⊆ µ(o) ∪ Z, by size

monotonicity of C,

for each Z ′ ∈ Co(µ(o)∪Z), |Z | ≤ |Z ′ |. (1)

By stability of µ, either Y * Z or µ(o) ∈ Co(µ(o)∪ Y ). If µ(o) ∈ Co(µ(o)∪ Y ), then by size

monotonicity of C, for each Z ∈ Co(µ(o)∪ Y ), |Z | = |µ(o)|. Instead, if Y * Z, the induction

hypothesis implies

for each Z ′ ∈ Co(µ(o)∪Z), |Z ′ | = |µ(o)|. (2)

By (1) and (2), |Z | ≤ |µ(o)|. Since C is idempotent and µ ∈ F , µ(o) ∈ Co(µ(o)). Then, since C

is size monotonic and Z ∈ Co(µ(o)∪Y ), |µ(o)| ≤ |Z |. Thus, we conclude that |Z | = |µ(o)|.

Proof of Lemma 2. Suppose that µ is wasteful. Then there are o ∈ O and ν ∈ F such that

|ν(o)| > |µ(o)| and, for each y ∈ ν(o) \ µ(o), y PN (y) µ(N (y)). Let Y ≡ ν(o) \ µ(o). Since Y ⊆
Y
µ
o (P ) and Y is finite, by Lemma 3, for each Z ′ ∈ Co(µ(o)∪Y ), |Z ′ | = |µ(o)|. However, ν(o) ⊆
µ(o)∪ Y . So by size monotonicity of C, for each Z ∈ Co(ν(o)) and each Z ′ ∈ Co(µ(o)∪ Y ),

|Z | ≤ |Z ′ | = |µ(o)|. Since ν ∈ F , ν ∈ Fo = range(Co). So by idempotence of C, ν(o) ∈ Co(ν(o)).

Thus, |ν(o)| ≤ |µ(o)|. This contradicts the definition of ν.
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