Rethinking efficiency in random allocation

Samson Alva
University of Texas at San Antonio

Eun Jeong He University of Seoul

Vikram Manjunath University of oftawa

March 6,2024@ Bonn

Efficiency in Economics

Efficiency in Economics
Central normative criterion for over a century

Efficiency in Economics
Central normative criterion for over a century
First reference by Pareto in 1902
Il punto m gode di tale proprietà perchè, essendo punto-
 di equilibrio, le due curve di indifferenza sono tangenti. Se m è un punto ove due linee di indifferenza si tagliano, è manifesto che, se uno degli individui è in s e l'altro in t, sulla retta $s m$, per modo che si abbia sempre

Efficiency in Economics
Central normative criterion for over a century
First reference by Pareto in 1902
"The point m enjoys the properly that it is not possible in departing from it, by barter, or by similar arrangement such that what is taken away from one individual is given to another, to increase the total ophelimities of both individuals."

Efficiency in Economics
Appears in Edgeworth (1881) even earlier

Efficiency in Economics

Appears in Edgeworth (1881) even earlier

In general let there be m contractors and n subjects of contract, n variables. Then by the principle (3) [above, p. 23] the state of equilibrium may be considered as such that the utility of any one contractor must be a maximum relative to the utilities of the other contractors being constant, or not decreasing ; which

Efficiency in Economics
Appears in Edgeworth (1881) even earlier

In general let there be m contractors and n subjects of contract, n variables. Then by the principle (3) [above, p. 23] the state of equilibrium may be considered as such that the utility of any one contractor must be a maximum relative to the utilities of the other contractors being constant, or not decreasing; which
[should we have called it
Edgeworth-efficiency?

A Minor Digression (on that parenthetical note)
It would appear that Pareto didn't know about the Edgeworth box in 1902

A Minor Digression (on that parenthetical note)
He actually discovered it a few years later

A Minor Digression (on that parenthetical note)
He actually discovered it a few years later

Pareto (1906)

A Minor Digression (on that parenthetical note)
But didn't Edgeworth invent it?

A Minor Digression (on that parenthetical note)
This is Edgeworth's "Edgeworth box"

Fig. 1.

A Minor Digression (on that parenthetical note)
This is Edgeworth's "Edgeworth box"

It depicts the contract curve ($c c^{\prime}$) in his Robinson Crusoe economy

A Minor Digression (on that parenthetical note)

Should we switch to the Pareto-box
and
Edgeworth -efficiency?

A Minor Digression (on that parenthetical note)
Should we switch to the Pareto-box
and
Edge worth -efficiency?

End of digression

Efficiency in Economics
Edge worth's
Pareto's formulation of efficiency works well for divisible goods where we look for tangency

Efficiency in Economics
Pareto's formulation of efficiency works well for divisible goods where we look for tangency

Arrow (1951) brings this principle to a setting where that's not possible

Efficiency in Economics
In response to the debate over the compensation principle he argues that the comparison should be between a state X and a state Y after compensations are made
i.e. What we now all know as Pareto-efficiency

Efficiency in Economics

Notably, he spends at least a few
lines "justifying" it
This formulation is certainly not debatable except perhaps on a philosophy of systematically denying people whatever they want. Actually, it is a rather roundabout way of saying something simple. For

Efficiency in Economics
By the 70 s this is generally taken for granted

Efficiency in Economics
By the 70 s this is generally taken for granted
Zeckhanser (1973) lists it as one of two criteria and simply says Pareto-optimality is "unambiguous"

Efficiency in Economics
By the 70 s this is generally taken for granted
Zeckhauser (1973) lists it as one of two criteria and simply says Pareto-optimality is "unambiguous"
Acheiving Pureto-efficiency in random allocation is the entire point of Hylland \& Zeckhauser (1979)

Random Allocation
We study the same kind of random allocation problem

Random Allocation
We study the same kind of random allocation problem
Departure from H\&Z (1973): Ordinality

Random Allocation
We study the same kind of random allocation problem

Departure from H\&Z (1973): Ordinality Literature on ordinal random allocation Starts with Bogomolnain \& Moulin (2001)

Random Allocation
Is the right formulation of efficiency still "unambiguous?

Random Allocation
Is the right formulation of efficiency still "unambiguous?

We don't think so

Random Allocation
Is the right formulation of efficiency still "unambiguous?

We don't think so
But broad acceptance of Pareto-efficiency as self-evidently appropriate might be why the current definition hasn't seen any discussion

Outline of the Talk

* The random allocation model

Outline of the Talk

* The random allocation model
* An argument for ordinal allocation rules

Outline of the Talk

* The random allocation model
* An argument for ordinal allocation rules
* Porting axioms from the cardinal model to the ordinal model

Outline of the Talk

* The random allocation model
* An argument for ordinal allocation rules
* Porting axioms from the cardinal model to the ordinal model
* Contrast our efficiency to the rest of the literature

Outline of the Talk

* The random allocation model
* An argument for ordinal allocation rules
* Porting axioms from the cardinal model to the ordinal model
* Contrast our efficiency to the rest of the literature
* A characterization of efficient, strategy-proof, .. rules

Random Allocation
$N \longleftarrow$ set of agents

Random Allocation

Random Allocation

$$
|N|=|A|
$$

Agents have vNM preferences
$u_{i a}$ <is utility from object a

Random Allocation

$$
|N|=|A|
$$

Agents have vNM preferences

$$
u_{i a}
$$

$u<$ all utility vectors without ties

Random Allocation

$$
|N|=|A|
$$

Agents have $u N M$ preferences
$u_{i a}$
U In the paper we allow any superset of this domain
(Richer set of preferences makes most of our results easier)

Random Allocation

$$
|N|=|A|
$$

Agents have $v N M$ preferences

$$
u^{u_{i a}}
$$

Each i gets π_{i} © probability distribution over A

Random Allocation

$$
|N|=|A|
$$

Agents have $v N M$ preferences

$$
u^{u_{i a}}
$$

Each i gets π_{i}
$u_{i} \cdot \pi_{i} \leftarrow$ is expected utility from π_{i}

Random Allocation
$\pi \leftarrow$ bistochastic matrices

Random Allocation
$\pi \leftarrow$ bistochastic matrices
There's always a lottery of matchings that induces the marginals given by a bistochastic matriy (Birkhoff (1946), von Neumann (1953))

Random Allocation
π
$\varphi: u^{N} \longrightarrow \pi$
(Allocation) rule maps utility profiles to allocations

Properties of Allocations/Rules (Axioms)
π is efficient if $\nexists \pi^{\prime} \in \Pi$ such that $\forall i u_{i} \pi_{i}^{\prime} \geqslant u_{i} \pi_{i}$ $\exists i \quad u_{i} \cdot \pi_{i}^{\prime}>u_{i} \cdot \pi_{i}$

Properties of Allocations/Rules (Axioms)
π is efficient if $\nexists \pi^{\prime} \in \mathbb{\pi}$ such that $\forall i u_{i} \pi_{i}^{\prime} \geqslant u_{i} \pi_{i}$ $\exists i u_{i} \cdot \pi_{i}^{\prime}>u_{i} \cdot \pi_{i}$
The same notion of efficiency that dates back to Edgeworth

Properties of Allocations/Rules (Axioms)
π is fair (no-envy) if $\nexists i, j \in N$ such that $u_{i} \pi_{j}>u_{i} \pi_{i}$

Properties of Allocations/Rules (Axioms)
π is fair (no-envy) if
$\nexists i, j \in N$ such that

$$
u_{i} \pi_{j}>u_{i} \pi_{i}
$$

Dates back to Tinbergen (1930)

Properties of Allocations/Rules (Axioms)
φ is symmetric if $\forall u \in U^{N}$ and $\forall i, j \in N$

$$
u_{i}=u_{j} \Rightarrow \varphi_{i}(u)=\varphi_{j}(u)
$$

Properties of Allocations/Rules (Axioms)
φ is symmetric if $\forall u \in U^{N}$ and $\forall i, j \in N$

$$
u_{i}=u_{j} \Rightarrow \varphi_{i}(u)=\varphi_{j}(u)
$$

Aristotle (350 BCE?)

Properties of Allocations/Rules (Axioms)
Q is strategy-proof if $\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

Properties of Allocations/Rules (Axioms)
Q is strategy-proof if $\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

$$
u_{(T)} \cdot \varphi_{i}\left(u_{T}\right) \geqslant u_{i} \cdot \varphi_{i}\left(u_{i}^{3}, u_{-i}\right)
$$

Black (1948)\& Farquharson (1956)

Properties of Allocations/Rules (Axioms)
φ is non-boss y if $\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

$$
\varphi_{i}(u)=\varphi_{i}\left(u_{i}^{\prime}, u_{i}\right)
$$

Properties of Allocations/Rules (Axioms)
φ is non-boss y if $\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

$$
\begin{aligned}
\varphi_{i}(u) & =\varphi_{i}\left(u_{i}^{\prime}, u_{i}\right) \\
& \| \\
\varphi(u) & =\varphi\left(u_{i}^{\prime}, u_{i}\right)
\end{aligned}
$$

Properties of Allocations/Rules (Axioms)
φ is non-boss y if $\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

$$
\begin{aligned}
\varphi_{i}(u) & =\varphi_{i}\left(u_{i}^{\prime}, u_{i}\right) \\
& \| \\
\varphi(u) & =\varphi\left(u_{i}^{\prime}, u_{i}\right)
\end{aligned}
$$

Satterthwaite \& Sonnenschein (1981)

Properties of Allocations/Rules (Axioms)
φ is continuous if $\varphi(u)$ is continuous in u

Properties of Allocations/Rules (Axioms)
φ is continuous if $\varphi(u)$ is continuous in x

Chichilnisky (1980)

Properties of Allocations/Rules (Axioms)
$P \leftarrow$ linear orders over A

Properties of Allocations/Rules (Axioms)

$\forall P \in P \quad U^{P} \leftarrow v N M$ utilities consistent with P

Properties of Allocations/Rules (Axioms)
$\forall P \in P \quad U^{P} \leftarrow v N M$ utilities consistent with P i.e. u such that

$$
u_{a}>u_{b} \Leftrightarrow a P b
$$

Properties of Allocations/Rules (Axioms)
Q is Ordinal if $\forall u, u^{\prime} \in u^{N}$ u \& u^{\prime} consistent with same $P \in \Phi^{N}$

$$
\varphi(u)=\varphi\left(u^{\prime}\right)
$$

Properties of Allocations/Rules (Axioms)
Q is Ordinal if $\forall u, u^{\prime} \in u^{N}$ u \& u^{\prime} consistent with sume $p \in P^{N}$ II,

$$
\varphi(u)=\varphi\left(u^{\prime}\right)
$$

Gibbard (1977); Bogomolnaia b Moulin (2001)

Why Ordinality?
Ill offer two justifications

Why Ordinality?
Bogomolnaia \& Moulin's (z001) argument:
the central assumption in this paper. ${ }^{5}$ It can be justified by the limited rationality of the agents participating in the mechanism. There is convincing experimental evidence that the representation of preferences over uncertain outcomes by VNM utility functions is inadequate (see, e.g., Kagel and Roth [11]). One interpretation of this literature is that the formulation of rational preferences over a given set of lotteries is a complex process that most agents do not engage into if they can avoid it. An ordinal mechanism allows the participants to formulate only this part of their preferences that does not require to think about the choice over lotteries. It is genuinely simpler to implement an ordinal mechanism than a cardinal one.

Why Ordinality?

Why Ordinality?

Why Ordinality?

Why Ordinality?

Ordinality as an informational constraint: Q is measurable wot this partition

Why Ordinality?

Theorem: $(|N|=|A|=3)$ $\left.\begin{array}{l}\text { efficient } \\ \text { strategy-proof } \\ \text { non-bossy } \\ \text { continuous }\end{array}\right\} \Rightarrow d$ is ordinal
ϕ is

Why Ordinality?

Theorem: $(|N|=|A|=3)$
efficient $?$
ϕ is strategy-proof \Rightarrow q is ordinal non-bossy continuous

Ehlers, Majumdar, Mishra \& Sen (2020) show a general result with a stronger continuity axiom

Outline of the Talk
\checkmark The random allocation model
\checkmark An argument for ordinal allocation rules

* Porting axioms from the cardinal model to the ordinal model
* Contrast our efficiency to the rest of the literature
* A characterization of ex ante efficient. strategy-proof, .. rules

Axioms for Ordinal Rules
Only need to bother with axioms that deal with comparing lotteries

Axioms for Ordinal Rules
Only need to bother with axioms that deal with comparing lotteries

Non-bossiness a symmetry are the same

Axioms for Ordinal Rules
Only need to bother with axioms that deal with comparing lotteries

Non-bossiness a symmetry are the same

The others replace EU comparisons with stochastic dominance comparisons

Axioms for Ordinal Rules

Stochastic dominance

Axioms for Ordinal Rules

Stochastic dominance

$$
\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime} \text { according to } u_{i}
$$

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
& \pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime} \quad \text { second best } \\
& \pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i\left(a_{2}\right)}^{\prime} \text { to object according } u_{i}
\end{aligned}
$$

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
& \pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime} \\
& \pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime} \\
& \vdots \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime}+\ldots+\pi_{i a_{n}}^{\prime} \\
& \pi_{i a_{n}}+\ldots+\pi_{i a_{2}}+\pi_{i a_{1}} \\
& \text { worst object according } \\
& \text { to } u_{i a_{n}}
\end{aligned}
$$

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
& \pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime} \\
& \pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime} \\
& \pi_{i a_{n}}+\ldots+\pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime}+\ldots+\pi_{i a_{n}}^{\prime} \\
& \pi_{i} u_{i}^{s d} \pi_{i}^{\prime}
\end{aligned}
$$

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime} \\
\pi_{i a_{2}}+\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime} \\
& \vdots \\
\pi_{i a_{n}}+\ldots+\pi_{i a_{2}}+\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime}+\ldots+\pi_{i a_{n}}^{\prime}
\end{aligned}
$$

Only relies on ordinal content of u_{i} : $\forall u_{i}, u_{i}^{\prime} \in u^{p} \quad u_{i}^{s d}=u_{i}^{3 d d}$

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime} \\
\pi_{i a_{2}}+\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime} \\
& \vdots \\
\pi_{i a_{n}}+\cdots+\pi_{i a_{2}}+\pi_{i a_{1}} & \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime}+\ldots+\pi_{i a_{n}}^{\prime}
\end{aligned}
$$

$U_{i}^{\text {sd }}$ is an incomplete ordering of lotteries

Axioms for Ordinal Rules

Stochastic dominance

$$
\begin{aligned}
& \pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime} \\
& \pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime} \\
& \vdots \\
& \pi_{i a_{n}}+\ldots+\pi_{i a_{2}}+\pi_{i a_{1}} \geqslant \pi_{i a_{1}}^{\prime}+\pi_{i a_{2}}^{\prime}+\ldots+\pi_{i a_{n}}^{\prime}
\end{aligned}
$$

Comparison by expected utility according to u_{i} is one completion of u_{i}

Axioms for Ordinal Rules
Substantial literature following B\&M (2001) replaces EU comparison with Sd comparison in other axioms
sd-Fairness B\&M (2001)
$\forall u \in u^{N}, \forall i, j \in N$

$$
\varphi_{i}(u) \quad u_{i}^{s d} \quad \varphi_{j}(u)
$$

or

$$
\varphi_{i}(u)=\varphi_{j}(u)
$$

sd-Fairness
Proposition: For every ordinal rule φ,
dis fair \Longleftrightarrow pis sd-fair
sd-Strategy-proofness B\&M (2001)
$\forall u \in U^{N}, \forall i \in N, \forall u_{i}^{\prime} \in U$

$$
\varphi_{i}(u) u_{i}^{s d} \quad \varphi_{i}\left(u_{i}^{\prime}, u_{i}\right)
$$

or $\varphi_{i}(u)=\varphi_{i}\left(u_{i}^{\prime}, u_{i}\right)$
sd-Strategy-proofness
Proposition: For every ordinal rule φ, cis strategy-proof $\Longleftrightarrow \varphi$ is sd-strategy-proof
sd-Efficiency B\&M (2001)
$\forall u, \nexists \pi \in \pi$ such that
$\forall i \pi_{i} u_{i}^{\text {sd }} \phi_{i}(u)$
${ }^{\text {or }} \pi_{i}=\phi_{i}(x)$
$\exists_{i} \quad \pi_{i} u_{i}^{s d} \varphi_{i}(x)$
sd-Efficiency
Proposition: For every ordinal rule φ,
dis efficient $\Longleftrightarrow \varphi$ is sd-efficient

A Consistent Definition of Efficiency
Incompleteness of $u_{i}^{s d}$ is what makes things trick

A Consistent Definition of Efficiency
Incompleteness of $u_{i}^{s d}$ is what makes things trick
Say that ρ is sodefficient ${ }^{t}$ if $\forall u \quad \forall \pi \in \Pi$

$$
\begin{array}{lll}
\forall i & \varphi_{i}(u) & u_{i}^{s d} \pi_{i} \\
\text { or } & \varphi_{i}(u) & =\pi_{i}
\end{array}
$$

A Consistent Definition of Efficiency
Incompleteness of $u_{i}^{s d}$ is what makes things trick
Say that f is sdefficient ${ }^{t}$ if $\forall u \quad \forall \pi \in \Pi$
$\forall i$

$$
\begin{aligned}
& \varphi_{i}(u) \quad u_{i}^{\text {sd }} \quad \pi_{i} \quad \begin{array}{l}
\text { Gibbard's }(1977) \\
\text { definition of }
\end{array} \\
& \varphi_{i}(u)=\pi_{i} \text { ex ante efficiency }
\end{aligned}
$$

A Consistent Definition of Efficiency
Proposition For every ordinal rule $\varphi_{\text {, }}$, $q_{\text {is }}$ efficient $\Leftrightarrow \varphi$ is sdefficient ${ }^{+}$

A Consistent Definition of Efficiency
Proposition: For every ordinal rule φ^{s} dis efficient \Leftrightarrow Q is sdefficient ${ }^{+}$

Since well be working with ordinal rules, well drop the "sd-"preffixes and this +"

Outline of the Talk
\checkmark The random allocation model
\checkmark An argument for ordinal allocation rules
\checkmark Porting axioms from the cardinal model to the ordinal model

* Contrast our efficiency to the rest of the literature
* A characterization of ex ante efficient. strategy-proof, ... rules

Efficiency vs sd-Efficiency
"No change makes everyone better off"

Efficiency vs sd-Efficiency
"No change makes everyone better off"

Any change makes someone worse off"

Efficiency vs sd-Efficiency
"No change makes everyone better off" These are essentially the same for complete preferences λ_{11} Any change makes someone worse off"

Efficiency vs sd-Efficiency
"No change makes everyone better off" (Any change makes someone worse off"
This one is stronger for incomplete
comparisons

Efficiency vs sd-Efficiency
Sd -efficiency
"No change makes everyone better off"

Any change makes someone worse off" four efficiency

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Sd-efficiency says any change moves someone here

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

Sd-efficiency says any change moves someone here

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

efficiency says any change moves someone here

Efficiency vs sd-Efficiency

$$
u_{i a}>u_{i b}>u_{i c}
$$

efficiency says any change moves someone here

$u_{i} \pi_{i}>u_{i} \pi_{i}^{\prime}$ as intended

Efficiency vs sd-Efficiency
B\&M (2001) introduce so -efficiency and define a new rule that is sd-fair and sd-efficient

Efficiency vs sd-Efficiency
B\&M (2001) introduce so -efficiency and define a new rule that is fair and sd-efficient

Efficiency vs sd-Efficiency
B\&M (2001) introduce so -efficiency and define a new rule that is fair and sd-efficient Fair \Rightarrow symmetric

Efficiency vs sd-Efficiency
B\&M (2001) introduce sd-efficiency and define a new rule that is fair and sd-efficient Fair \Rightarrow symmetric

Given the weakness of sd-efficiency how inefficient could a symmetric rule be?

Cost of Symmetry

Measure of worst case welfare loss for an agent i at π :

$$
\max \frac{u_{i} \pi_{i}-u_{i} \pi \pi_{i}}{\max _{a} u_{i a}}
$$

π^{\prime} that dominates π

Cost of Symmetry

Measure of worst case welfare loss for an agent i at π :

$$
\max
$$

π 'that dominates $\pi \underbrace{\text { a }}_{\text {Equivalent to gaining }}$ this much probability of best object to move from π to π^{\prime}

Cost of Symmetry

Measure of worst case welfare loss for an agent i at π :

$$
\max \frac{u_{i} \pi_{i}-u_{i} \pi \pi_{i}}{\max _{a} u_{i a}}
$$

π^{\prime} that dominates π
denote this $k_{i}(\pi)$

Cost of Symmetry

Measure of worst case welfare loss at π :

$$
L(\pi)=\max _{i} k_{i}(\pi)
$$

Cost of Symmetry

Measure of worst case welfare loss at π :

$$
L(\pi)=\max _{i} k_{i}(\pi)
$$

By definition, $\forall \pi \quad 0 \leq L(\pi) \leq 1$

Cost of Symmetry
Example with $|N|=|A|=3$

	u_{1}	u_{2}	u_{3}
a	1	1	1
b	$1-\varepsilon$	ε	ε
c	0	0	0

Cost of Symmetry
Example with $|N|=|A|=3$

	u_{1}	u_{2}	u_{3}	ordinal symmetric
a	1	1	1	\Downarrow
b	$1-\varepsilon$	ε	ε	$\forall i$
	\forall	$\varphi_{i}(u)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$		

Cost of Symmetry
Example with $|N|=|A|=3$

Cost of Symmetry
Example with $|N|=|A|=3$

Cost of Symmetry
Extending this example to $|N|=|A|=n$

$$
L(\pi) \longrightarrow \frac{n-2}{n}
$$

So $L(\pi)$ can get arbitrarily close to 1 for n large enough and ε small enough

Cost of Symmetry
Extending this example to $|N|=|A|=n$

$$
L(\pi) \longrightarrow \frac{n-2}{n}
$$

For ordinal rules, symmetry can come at a substantial loss of efficiency

A Little Background

A Little Background

Most obvious rule: Random Serial Dictatorship

A Little Background

Most obvious rule:
Random Serial Dictatorship
Ubiquitous

A Little Background

Most obvious rule:
Random Serial Dictatorship
Ex post efficient

A Little Background
Most obvious rule:
Random Serial Dictatorship
Not efficient in our (ex cente) sense

A Little Background

Most obvious rule:
Random Serial Dictatorship
Not even sod-efficient

A Little Background
Most obvious rule:
Random Serial Dictatorship
Not even sod-efficient
Hylland \& Zeckhauser (1979) suggest Competitive Equilibrium from Equal Income as an efficient alternative

A Little Background
$C E E \longleftarrow$ not strategy-proot

A Little Background
LEI \Longleftarrow not strategy-proof But symmetric and efficient

A Little Background
LEI \longleftarrow not strategy-proof
But symmetric and efficient

Thou (1990):
\# $Q \begin{aligned} & \text { efficient } \\ & \text { strategy-proof } \\ & \text { symmetric }\end{aligned}$

A Little Background
$C E E \longleftarrow$ not strategy-proof
But symmetric and efficient

Thou (1990):

A Little Background
Obviously, Thou's (1990) result means
$\nexists \rho \begin{aligned} & \text { efficient } \\ & \text { strategy-proof }\end{aligned}$
symmetric ordinal

A Little Background
B\&M (2001):
$\nexists \rho \begin{aligned} & \text { sd-cfficient } \\ & \text { strategy-proof }\end{aligned}$ symmetric Ordinal

A Little Background
As we just saw:
\# 0 efficient
symmetric ordinal

A Little Background
B\&M (2001):
$\exists \rho^{\text {sdefficient }}$
symmetric Ordinal
They define the "Probabilistic Serial" rule that has these properties

A Little Background
Large literature on PS

A Little Background
Large literature on PS
PS trades strategyproofness of RSD for an efficiency gain

A Little Background
Large literature on PS
PS trades strategyproofness of RSD for an efficiency gain
But that efficiency gain might not be what one hopes for

Efficiency vs sd-Efficiency

If efficiency is key, maybe sd-efficiency isn't the right formulation

Efficiency vs sd-Efficiency

If efficiency is key, maybe sd-efficiency is n't the right formulation

Instead, our notion of efficiency might be the one to think of

Efficiency vs sd-Efficiency

If efficiency is key, maybe sd-efficiency isn't the right formulation

Instead, our notion of efficiency might be the one to think of

As well see, there is a rich class of strategy-proof and efficient rules

Efficiency vs sd-Efficiency

If efficiency is key, maybe sd-efficiency isn't the right formulation

Instead, our notion of efficiency might be the one to think of

As we'll see, There is a rich class of strategy-proof and efficient rules (though they aren't symmetric)

Efficiency vs sd-Efficiency
One more way to compare

Efficiency vs sd-Efficiency
One more way to compare
RSD uniformly randomizes over orderings

Efficiency vs sd-Efficiency
One more way to compare
RSD uniformly randomizes over orderings
Can limit randomization

Efficiency vs sd-Efficiency
One more way to compare
RSD uniformly randomizes over orderings
Can limit randomization

Harless \& Than (2022) characterize maximal sets of orders that you can randomize over and still get sd-efficiency

Efficiency vs sd-Efficiency
Obviously singleton sets give you efficiency

Efficiency vs sd-Efficiency
Obviously singleton sets give you efficiency

Can do more

Efficiency vs sd-Efficiency
Obviously singleton sets give you efficiency

Can do more
B\&M (2001) already showed:
RSD is sd efficient for $|N|=3$

Efficiency vs sd-Efficiency
Obviously singleton sets give you efficiency

Can do more
B\&M (2001) already showed:
RSD is sd efficient for $|N|=3$
So randomizing uniformly over three agents should work

Efficiency vs sd-Efficiencya set of orders

Efficiency vs sd-Efficiency
θ
a set of orders $\succ \in \theta \quad>^{\prime} \in \theta$

Efficiency vs sd-Efficiency
θ - a set of orders

$\left.\begin{array}{l}i \\ j \\ k\end{array}\right\}$ anything $\begin{aligned} & \text { can be }\end{aligned}\left\{\begin{array}{l}k \\ \vdots \\ j\end{array}\right.$
$\{\stackrel{\text { exactly the }}{\text { same }}\}$

Efficiency vs sd-Efficiency
O- a set of orders

Efficiency vs sd-Efficiency
Adjacent-three sets are maximal to ensure RSD is sd-efficient

Efficiency vs sd-Efficiency
Adjacent-three sets are maximal to ensure RSD is sd-efficient What about efficiency?

Efficiency vs sd-Efficiency
Adjacent-three sets are maximal to ensure RSD is sd-efficient What about efficiency?

RSD for $N N=3$ is symmetric

Efficiency vs sd-Efficiency
Adjacent-three sets are maximal to ensure RSD is sd-efficient What about efficiency?

RSD for $N N=3$ is symmetric As we saw II not efficient

Efficiency vs sd-Efficiency
θ - a set of orders

Efficiency vs sd-Efficiency
Proposition: Adjacent -two sets are maximal for RSD to be efficient

Efficiency vs sd-Efficiency
Proposition: Adjacent -two sets are maximal for RSD to be efficient Lots of reasons to use RSD

Efficiency vs sd-Efficiency
Proposition: Adjacent-two sets are maximal for RSD to be efficient

Lots of reasons to use RSD
Simplicity (Li (2017) ; Pycia \&Troyan (2023)) is the main one

Efficiency vs sd-Efficiency
Proposition: Adjacent-two sets are maximal for RSD to be efficient

Lots of reasons to use RSD
Simplicity (Li (2017) ; Pycia \&Troyan (2023)) is the main one
Then cost of efficiency over sd-efficiency is going from adjacent- 3 to adjacent -2

Outline of the Talk
\checkmark The random allocation model
\checkmark An argument for ordinal allocation rules
\checkmark Porting axioms from the cardinal model to the ordinal model
\checkmark Contrast our efficiency to the rest of the literature

* A characterization of ex ante efficient, strategy-proof, ... rules

A Characterization

A Characterization φ is RSD over \Rightarrow कis $\begin{aligned} & \text { efficient } \\ & \text { strategy-proof } \\ & \text { non-bossy } \\ & \text { continuous }\end{aligned}$

A Characterization
Need to add an axiom

A Characterization
Need to add an axiom
9 is neutral if renaming objects is inconsequential
May (1952)

A Characterization
Proposition: for $|N|=3$
efficient
φ is RSD over \Leftrightarrow of is Strategy-proof adjacent - two nom-bossy ordinal neutral

A Characterization
Proposition: for $|N|=3$
efficient
φ is RSD over \Leftrightarrow of is Strategy-proof

neutral
From earlier theorem

A Characterization
Proposition: for $|N|=3$
efficient
φ is RSD over \Leftrightarrow of is Strategy-proof adjacent - two nom-bossy ordinal neutral
Parallel with Gibbard's (1977) result for prababilistic Arrovian setting

Limited Randomization
Very limited randomization not just due to ordinality \& efficiency (other axioms play a role)

Limited Randomization
Very limited randomization not just due to ordinality \& efficiency (other axioms play a role)

Ordinality \& efficiency $\Rightarrow \forall i, j$

$$
\left|\operatorname{supp}\left(\pi_{i}\right) \cap \operatorname{supp}\left(\pi_{v}\right)\right| \leq 2
$$

Limited Randomization
Very limited randomization not just due to ordinality \& efficiency (other axioms play a role)

Ordinality \& efficiency $\Rightarrow \forall i, j$

$$
\left|\operatorname{supp}\left(\pi_{i}\right) \cap \operatorname{supp}\left(\pi_{j}\right)\right| \leq 2
$$

This is generically the case even without ordinality

Limited Randomization

Limited Randomization

Limited Randomization

Limited Randomization

Back to the Characterization
for $|N|>3$
efficient

$$
\begin{aligned}
\text { q is RSD over } \left.\Rightarrow \text { of is } \begin{array}{l}
\text { strategy-proof } \\
\\
\text { non-bossy } \\
\\
\\
\\
\\
\text { ordinal }
\end{array}\right\}=\begin{aligned}
\text { neutral }
\end{aligned}
\end{aligned}
$$

A Characterization
for $|N|>3$
efficient
φ is RSD over \Rightarrow of is Strategy-proof adjacent - two non-bossy ordinal neutral

A Class of Recursive Rules
Some notation to set us up

A Class of Recursive Rules
Some notation to set us up

$$
S=[0,1]^{A} \leftharpoonup \text { supply vectors }
$$

A Class of Recursive Rules
Some notation to set us up
Partial allocations

$$
\left(\forall i \quad \pi_{i}=0 \text { or } \sum_{a \in A} \pi_{i a}=1\right)
$$

A Class of Recursive Rules
Some notation to set us up

$$
\begin{aligned}
f: \rho \times \mathcal{A}^{N} \longrightarrow \bar{\pi} \longleftarrow & \text { partial allocation rule } \\
& f(s, u) \in \pi \\
& \forall_{a} \sum_{i} f_{i a}(s, u) \leq s_{a}
\end{aligned}
$$

A Class of Recursive Rules
Some notation to set us up

$f: \rho \times \mathcal{U}^{N} \longrightarrow \bar{\pi} \quad \neq$-all partial rules

A Class of Recursive Rules
Some notation to set us up

$$
f: \rho \times u^{N} \rightarrow \pi \quad 7
$$

$$
r(S, \pi)=\left(s_{a}-\sum_{i} \pi_{i a}\right)_{a \in A}<\begin{aligned}
& \text { residual supply } \\
& \text { after allocating }
\end{aligned}
$$ π from s

A Class of Recursive Rules
Some notation to set us up

$$
\begin{aligned}
& f: \rho \times \mu^{N} \longrightarrow \bar{\pi} \quad \neq \\
& r(s, \pi) \\
& \eta=\left(\pi^{\prime}, \ldots, \pi^{k}\right) \quad \begin{array}{c}
\eta+\pi^{k+1}=\left(\pi^{\prime}, \ldots, \pi^{k}, \pi^{k+1}\right) \\
\tau \text { append operator }
\end{array}
\end{aligned}
$$

A Class of Recursive Rules
ff \leftarrow all possible histories

A Class of Recursive Rules
f

$$
\psi^{\top}=\left\{\left(\pi^{\prime}, \ldots, \pi^{k}\right) \in \notin: \sum_{k=1}^{k} \pi^{k} \in \Pi\right\}
$$

- Terminal histories where the cumulative allocation is a full (not partial) allocation

A Class of Recursive Rules
f

$$
f^{\top}=\left\{\left(\pi^{\prime}, \ldots, \pi^{k}\right) \in \notin: \sum_{k=1}^{k} \pi^{k} \in \Pi\right\}
$$

$f^{N T}=f \backslash f^{\top} \longleftarrow$ non-terminal histories

A Class of Recursive Rules
f

$$
\begin{aligned}
& f^{\top}=\left\{\left(\pi^{\prime}, \cdots, \pi^{k}\right) \in \notin: \sum_{k=1}^{k} \pi^{k} \in \Pi\right\} \\
& f^{N T}=f^{N} \backslash \phi^{\top}
\end{aligned}
$$

$\sigma: f^{N T} \longrightarrow \mathcal{F} \longleftarrow$ sequencing rale

A Class of Recursive Rules
That's a lot to keep track of

A Class of Recursive Rules
That's a lot to keep track of
Summary:
$f \in \mathcal{F}$ - Solves a little bit of the allocation problem

A Class of Recursive Rules
That's a lot to keep track of
Summary:
$f \in \mathcal{F}$ - Solves a little bit of the allocation problem
$\eta \in \notin$ - Keeps track of the small steps

A Class of Recursive Rules
That's a lot to keep track of Summary:
$f \in 7$ - Solves a little bit of the allocation problem
$\eta \in \notin$ - Keeps track of the small steps
$\sigma: f \rightarrow \mathcal{F}$ - says how the next bit should be solved

A Class of Recursive Rules
Let's put those parts together

A Class of Recursive Rules
Let's put those parts together

and utilities

A Class of Recursive Rules
Let's put those parts together

There's nothing
left to do

A Class of Recursive Rules
Let's put those parts together

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)= \begin{cases}\overrightarrow{0} & \text { if } \eta \in \not \psi^{\top} \\ & \text { if } \eta \in \mathcal{F}^{N T} \\ \pi=\sigma(\eta)(s, u)\end{cases}
$$

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)=\left\{\begin{array}{l}
\overrightarrow{0} \text { if } \eta \in \overrightarrow{\phi^{\top}} \\
\eta++\pi \quad \\
\begin{array}{l}
\pi=\sigma(\eta)(s, u) \\
\text { collect this step in the } \\
\text { history }
\end{array}
\end{array}\right.
$$

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)=\left\{\begin{array}{l}
\overrightarrow{0} \text { if } \eta \in \phi^{\top} \\
\eta++\pi \quad r(s, \pi) \text { if } \eta \in \mathcal{H}^{N T} \\
\pi=\sigma(\eta)(s, \psi) \\
\pi
\end{array} \begin{array}{l}
\text { That's what is left over } \\
\text { after this step }
\end{array}\right.
$$

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)=\left\{\begin{array}{ll}
\overrightarrow{0} & \text { if } \eta \in \psi^{\top} \\
\eta++\pi & r(s, \pi) \\
\pi=\sigma(\eta)(s, u)
\end{array} \text { if } \eta \in f^{N T}\right.
$$

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)=\left\{\begin{array}{l}
\overrightarrow{0} \text { if } \eta \in \dot{\phi}{ }^{\top} \\
\Phi(\eta++\pi, u, r(s, \pi)) \text { if } \eta \in f^{n T} \\
\begin{array}{l}
\pi=\sigma(\eta)(s, u) \\
\text { recursively solve the } \\
\text { remaining problem }
\end{array}
\end{array}\right.
$$

A Class of Recursive Rules
Let's put those parts together

$$
\Phi(\eta, u, s)=\left\{\begin{array}{c}
\overrightarrow{0} \text { if } \eta \in \oiint^{\top} \\
\begin{array}{l}
\pi+\Phi(\eta++\pi, u, r(s, \pi)) \\
\text { where } \\
\pi=\sigma(\eta)(s, u)
\end{array} \\
\text { if } \eta \in \mathcal{A}^{N T} \\
\text { return the current } \\
\text { step plus what the recursive } \\
\text { call returns }
\end{array}\right.
$$

A Class of Recursive Rules
Let's put those parts together

$$
\begin{aligned}
& \Phi(\eta, u, s)=\left\{\begin{array}{cc}
\overrightarrow{0} & \text { if } \eta \in \not \boldsymbol{\phi}^{\top} \\
\pi+\Phi(\eta++\pi, u, r(s, \pi)) \\
\text { where } \\
\pi=\sigma(\eta)(s, u)
\end{array} \text { if } \eta \in \mathcal{F}^{N T}\right. \\
& Q(u)=\Phi(u, u, \overrightarrow{1})
\end{aligned}
$$

Start with the empty history and full supply

A Class of Recursive Rules
Example: Scrial Dictatorship (Siensson 1999)

A Class of Recursive Rules
Example: Scrial Dictatorship (Siensson 1999) Number the agents 1 to n

A Class of Recursive Rules
Example: Scrial Dictatorship (Siensson 1999) Number the agents 1 to n
$f^{i} \leftarrow$ partial allocation rule that gives i their best object with probability 1

A Class of Recursive Rules
Example: Scrial Dictatorship (Siensson 1999) Number the agents 1 to n
$f^{i} \longleftarrow$ partial allocation rule that gives i their best object with probability 1

$$
\sigma(\eta)=f^{\operatorname{lingth}(\eta)}
$$

A Class of Recursive Rules
Almost there.

A Class of Recursive Rules
Almost there.
Each of the f^{i} s is a monarchy

A Class of Recursive Rules
Almost there.
Each of the f^{i} s is a monarchy
Given i, j and $\alpha \in(0,1)$ a diarchy is $f^{i j \alpha} \longleftarrow$ with α weight i pick first and then j and the opposite with weight $(1-\alpha)$

A Class of Recursive Rules
Almost there.
Each of the f^{i} 's is a monarchy Given i, j and $\alpha \in(0,1)$ a diarchy is $f^{i j \alpha}$
$\theta \leftarrow$ all diarchies

A Class of Recursive Rules
Almost there.
Each of the $f^{i} s$ is a monarchy
Given i, j and $\alpha \in(0,1)$ a diarchy is $f^{i j \alpha}$
O
$c_{\text {. }}$
M
includes monarchies $(i=j)$

A Class of Recursive Rules
Hierchy of monarchs and diarchs $\sigma(\eta) \epsilon$

A Class of Recursive Rules
Hierchy of monarchs and diarchs

$$
\sigma(\eta) \in D
$$

Conditions:

- If $\sum_{\lambda^{k} \in \eta}^{\pi^{k}}$ is not integral then $\sigma(\eta) \in M$
- Depends only on who gets something in η and whether they got integral or fractional allocations

A Characterization

efficient strategy-prool non-bossy ordinal neutral

A Characterization
Add an axiom to the list Q is boundedly invariant if $\forall u \in U^{N}, \forall i \in N, \forall a \in A$ $\forall u_{i}^{\prime} \in u$

$$
\text { if }\left\{b: x_{i b} \geqslant u_{i a}\right\}=\left\{b: u_{i b}^{\prime} \geqslant u_{i a}^{\prime}\right\}
$$

A Characterization
Add an axiom to the list
Q is boundedly invariant if $\forall u \in U^{N}, \forall i \in N, \forall a \in A$ $\forall u_{i}^{\prime} \in u$
if $\left.\begin{array}{rl}\left\{b: u_{i b} \geqslant u_{i a}\right\} & =\left\{b: u_{i b}^{\prime} \geqslant u_{i a}^{\prime}\right\}=B \\ & \text { and } \\ \forall b \in B \quad u_{i b}=u_{i b}^{\prime}\end{array}\right\}$ then $\forall j, \phi_{j a}(u)=\varphi_{j a}\left(u_{i}^{\prime}, u_{i}\right)$

A Characterization
Add an axiom to the list Q is boundedly invariant if $\forall u \in U^{N}, \forall i \in N, \forall a \in A$ $\forall u_{i}^{\prime} \in u$
if $\left.\begin{array}{l}\left\{b: u_{i b} \geqslant u_{i a}\right\}=\left\{b: u_{i b}^{\prime} \geqslant u_{i a}^{\prime}\right\}=B \\ \text { and } \\ \forall b \in B \quad u_{i b}=u_{i b}^{\prime}\end{array}\right\}$ then $\forall j, \phi_{j a}(u)=\phi_{j a}\left(u_{i}^{\prime}, u_{i}\right)$ $\forall b \in B \quad u_{i b}=u_{i b}^{\prime}$
Bogomolnaia \& Heo (2012)

A Characterization

Theorem:
ϕ is a HMD $\Leftrightarrow 9$ is
efficient
strategy-prool
non-bossy
ordinal
neutral
boundedly invariant

A Characterization

Theorem:
φ is a HMD $\Leftrightarrow \rho$ is
efficient
strategy-prool
non-bossy
ordinal
neutral
boundedly invariant
An extension of Svensson's (1999) characterization of serial dictatorship in determinstic model.

Recap

- Care is needed in adapting ideas to new settings

Recap

- Care is needed in adapting ideas to new settings
- We think our formulation of efficiency is the consistent one

Recap

- Care is needed in adapting ideas to new settings
- We think our formulation of efficiency is the consistent one
- With strategy-proofness there is a significant limitation on randomization when we impose efficiency

Important Open Questions

- Better understanding of how weak sd-efficiency really is

Important Open Questions

- Better understanding of how weak sd-efficiency really is
- Characterization like ours, but with sd-efficiency

Important Open Questions

- Better understanding of how weak sd-efficiency really is
- Characterization like ours, but with sd-efficiency
- Ordinal rules that are "more fair" if we drop strategy-proofness?

Thanks!

